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We performed agenome-wide association meta-analysis (GWAMA)

0f 290,134 attention-deficit/hyperactivity disorder (ADHD) symptom
measures of 70,953 unique individuals from multiple raters, ages and
instruments (ADHDgy\»). Next, we meta-analyzed the results with a study

of ADHD diagnosis (ADHDyggar1)- ADHDgyye returned no genome-wide
significant variants. We show that the combined ADHD gyga s GWAMA
identified 39 independent loci, of which 17 were new. Using a recently
developed gene-mapping method, Fine-mapped Locus Assessment Model
of Effector genes, we identified 22 potential ADHD effector genes implicating
several new biological processes and pathways. Moderate negative genetic
correlations (r, < -0.40) were observed with multiple cognitive traits. In
three cohorts, polygenic scores (PGSs) based on ADHD gy OUtperformed
PGSs based on ADHD symptoms and diagnosis alone. Our findings support
the notion that clinical ADHD is at the extreme end of a continuous liability
thatisindexed by ADHD symptoms. We show thatincluding ADHD symptom
counts helps to identify new genes implicated in ADHD.

Attention-deficit/hyperactivity disorder (ADHD) is, for many individu-
als, a persistent neurodevelopmental disorder"?. ADHD is character-
ized by the following three core symptoms: hyperactivity, impulsivity
and inattention®. It affects around 5% of children and adolescents and
2.5% of adults worldwide*. ADHD may be associated with serious con-
sequences for affected individuals, their families and society at large,
with symptoms persisting across multiple settings, that is, at home,
atschool and elsewhere®®, This disorder has a predominantly genetic
etiology, involving both common and rare genetic variants’. The mean
estimated heritability across 37 twin studies of ADHD was 74%°°.

In 2019, a genome-wide association meta-analysis (GWAMA) of
clinical ADHD, hereafter referred to as ADHDp,x6,010, Which included
data from 20,183 cases and 35,191 controls, identified the first 12
genome-wide significant loci associated with ADHD". The study
reported that 22% of the variance in ADHD could be explained by all
measured single nucleotide polymorphisms (SNPs). They also per-
formed meta-analyses with datafrom deCode, 23andMe and the Early

Genetics and Lifecourse Epidemiology (EAGLE) consortium'?. Four
independent loci reached the genome-wide significance threshold
in all three meta-analyses. Interestingly, most independent signifi-
cant loci, 15, were found in the meta-analysis with EAGLE, based on a
quantitative assessment of attention problems, implying that this can
boost the power to identify associated variants. In 2023, ADHDp,xc010
was updated, almost doubling the number of cases®. In this updated
GWAMA, ADHD,,,, the definition of cases was broader, for example,
by including individuals who used ADHD prescription medication.
The study reported 27 independent significant loci and estimated
that 14% of the variance in ADHD could be attributed to the included
SNPs. The broader definition of ADHD diagnosis not only resultedina
larger sample and therefore more power to detectimplicated genetic
variants, butalsoincreased the heterogeneity of the phenotype, which
may explain the decrease in estimated SNP heritability™.
Thereisanincreasing recognition that ADHD symptom countsin
nonclinical samples cantap into the same genetic constructas clinically
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Table 1| Cohort descriptives

Cohort Nypique Nowass Ngps Instrument Raters Minimum age Maximumage Meanage
ABCD 1154 5 4,47 18 M,ST 5 13 8.46
ALSPAC 7,308 7 33,973 18 MT 7 18 10.99
BREATHE 1,638 1 1,638 13 T 7 n 9.23
CATSS 7094 9 33,052 1,7,81718 F.M,S 8 19 13.66
CHDS 626 4 2,429 12,16,17 M,S 10 16 1372
COGA 2,072 1 2,072 13 S R R R
COPSAC 459 1 459 18 M 6 9 8.5
Dunedin 882 2 1,069 16 M 13 15 14.06
E-risk 1,859 1 1,859 14 S 18 18 18
FinnTwin 1138 5 4,998 15 FST 10 18 13.80
Gen-R 2,654 8 13,646 23,417 F.M,ST 3 12 6.95
GINIplus/LISA 1,439 2 2,582 18 M.,S 9 17 12.43
GSMS 730 3 1,605 9 M 9 17 1312
IBG 1,052 4 2,519 S M 7 18 12.83
INMA 541 1 541 13 T 3 7 5.06
INSchool 3,657 21 15,813 34,618 F.M,ST 5 17 9.94
MCTFR 2,040 2 3,662 13 T 1 14 13.26
MoBa 8,200 4 22,703 3,20 M 1 3.93
MSUTR 1,280 3 3,517 34,6 M,ST 9 7.83
MUSP 1,242 3 3,624 3,6 M,T 4 15 1.21
NFBC1986 3,433 1 3,433 6,19 S 16 16 16.01
NTR 6,228 16 52,615 3,4,5,61 F.M,ST 2 17 8.49
QIMR 3,978 5,528 20 M,S 9 18 14.01
Raine study 1,484 4 5,407 3 M,S 5 15 9.63
TCHAD 647 5 4,268 3,6 M.,S 8 17 13.48
TEDS 6,030 26 49,985 16 M,ST 1 18 8.89
TRAILS 1,354 9 10,657 3,46 M,ST 10 18 13.44
VTSABD 834 3 1,469 9 M 8 18 14.08
Total 70,953 154 290,138

Instrument codes—1, ASEBA-ABCL; 2, ASEBA-BPM; 3, ASEBA-CBCL; 4, ASEBA-TRF; 5, ASEBA-YASR; 6, ASEBA-YSR; 7, ASRS; 8, A-TAC; 9, CAPA; 10. Conner’s; 11, Devereux; 12, DISC; 13, DSM-IV;
14, DSM-V; 15, MPNI; 16, RBPC; 17, Rutter/Conners; 18, SDQ; 19, SWAN; 20, RS-DBD. For the full descriptives, see Supplementary Tables 2 and 8. M, mother report; F, father report; S, self-report;

T, teacher report; R, retrospective.

diagnosed ADHD, supporting the notion that clinical ADHD is at the
extreme end of a continuous measure of ADHD symptoms™'¢. This
hypothesis was initially suggested based on multivariate twin studies”.
In support, the genetic correlation (r) between quantitative ADHD
symptom counts' and ADHDyx6,010 (ref. 11) was estimated to be 0.97
(s.e.=0.21,P=2.66 x 10°), suggesting that combining these measures
isaviable strategy to increase statistical power in ADHD GWASs. This
was further supported by the increased number of genome-wide sig-
nificant loci in the meta-analysis of ADHDp,6,010 and EAGLE, as com-
pared to ADHDy,6,010 alone, and to meta-analyses of ADHD 65010,
deCode and 23andMe.

Here we combined information from 28 population-based cohorts
ina GWAMA of continuous ADHD symptom scores, comprising a total
0f70,953 participants (Table1). The measuresincluded repeated assess-
ments (longitudinal data) by multiple raters (maternal, paternal, teach-
ers and self-assessments) and instruments across ages (range =2-18
years), foratotal 0f290,134 measures. We alsoincluded retrospective
self-report data. The detailsin ref. 18 showed that using repeated meas-
ures greatly improved GWAS power over using a single aggregated
outcome. We meta-analyzed all available data into a cross-rater/
cross-age/cross-instrument GWAMA of ADHD symptoms (ADHDgyp),

taking into consideration the dependency between multiple assess-
ments within individuals®. Analyzing measures from multiple raters
and ages may furtherincrease the power of the analyses because of an
increase in the validity of the ADHD symptom measures. Next, we
estimated the genetic correlations (rg) between ADHDsy,;, and the
meta-analysis of case-control samples®, and meta-analyzed ADHDgyy;p
with ADHDp,sc (ADHDgyra)- Finally, we performed fine mapping and
gene-based tests based on ADHDgyy, and ADHDgygra 1, performed
follow-up enrichment and pathway analyses, estimated genetic cor-
relations between the GWAMA and aset of predefined outcomes from
cognitive and externalizing behavior domains and assessed
out-of-sample polygenic score (PGS) prediction in three cohorts.

Results

ADHDygy\ GWAMA

We first meta-analyzed the effect of each SNP across all available uni-
variate GWASs of quantitative ADHD measures. Based on an effective
sample size 0f 120,092, the estimated thP of ADHDygy, was 0.04
(s.e.=0.01;z=8.12). The mean x? statistic was 1.09 with a linkage dis-
equilibrium score regression (LDSC) intercept of 1.01 (s.e. = 0.01),

indicating that there was no or very limited inflation in test statistics
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Fig.1|Manhattan plot of GWAMA of ADHD symptoms. The red line represents the genome-wide significance threshold (P < 5 x 107%), adjusted for multiple
comparisons of common variants across the entire genome. The blue line represents amore lenient threshold (P <1x107%).

due to confounding biases, such as population stratification. Rather,
the GWAMA most likely captured the polygenic nature of childhood
ADHD symptoms. The GWAMA of ADHD symptoms did not identify
any genome-wide significant SNPs (Fig. 1and Supplementary Table 11).

Stratified meta-analyses of ADHD symptoms

After meta-analyzing all univariate ADHD symptoms GWASs, we per-
formed the following stratified meta-analyses: rater specific, age spe-
cificand instrument specific. For most stratified results, A’ zwas <4. The
genetic correlation between the two largest stratified GWAMAs, namely
teacher-rated ADHD symptoms and mother-rated ADHD symptoms,
was 0.72 (s.e. = 0.13), indicating that there are some rater differences
in the effects of genetic variants, which likely depend on the different
contexts in which teachers and parents observe the behavior’. Forest
plots forthelead SNPsin all significant loci with the effect sizes fromall
stratified GWAMAs did not reveal any clear patterns, because the smaller
sample sizes led to larger standard errors (Supplementary Datal).

Meta-analysis with ADHD diagnosis GWAS

SNP heritability estimated with genomicSEM was 0.13 (s.e. = 0.01) for
ADHDp,c. The estimated genetic correlation between ADHDy,» and
ADHDy,,cWas1.00 (s.e. = 0.06). The cross-trait intercept (CTI) was not
substantially different from zero and was subsequently constrained to
zero in the following meta-analysis.

Because the point estimate of the genetic correlation between
ADHDgy\» and ADHDyp,,; Was not substantially different from 1, we
constrained the genetic correlation at unity when pre-adjusting the
weights and zscores for the meta-analysis of ADHDsy,,, and ADHD 6.
Atotal of 6,571,852 SNPs were included in the meta-analysis. The SNP
heritability of ADHDgyra Was 0.11(s.e. = 0.01), withamean y?statistic
of 1.52. The LDSC-intercept and ratio were 1.02 (s.e. = 0.01) and 0.03
(s.e.=0.02), respectively,indicating that approximately 3% of the signal
mightbe due to confounding factors. Figure 2 shows aManhattan plot
of ADHD g - A total of 2,039 SNPs reached genome-wide significance
(P<5x107®), of which 644 were also reported in ADHD,,,; and 1,395
were new. The 2,039 SNPs corresponded to 43 independent lead SNPs
in 39 independent significant loci, identified with FUMA (https://
fuma.ctglab.nl)*, CAVIARBF*, FINEMAP? and PAINTOR? (for locus
plots, see Supplementary Data1and 2). Of these 39 loci, 22 were also
reported in ADHDy,,c and 17 were new. All 17 new loci were suggestive
(P<1x107%)in ADHDy,c. This suggests that including ADHDgy, led to
anincrease in power that pushed these 17 loci over the genome-wide
significance threshold. There was some fluctuation in genetic effects
among ADHDs,,,» cohorts (Supplementary Data 2). Five independent

significant loci in ADHDp,, did not replicate in ADHDgygpa .- Of these
fiveloci, alllead SNPs were still suggestive in ADHD gygga 1, two loci (on
chromosomes 3 and 7) had opposite directions of effects, and three
loci (on chromosomes 3, 4 and 8) had effects in the same direction
(Supplementary Tables 12 and 13).

Follow-up analyses

Fine mapping and gene-based tests. Follow-up analyses for ADHDgy,p
didnot reveal any implicated pathways or genes. For ADHD g1, gENE
mappingin FUMA mapped the 43 lead SNPs in 39 independent genomic
risk loci to 204 associated genes (Supplementary Table 15), of which
45 were also reported in ref. 13. Second, gene-based tests were runin
MAGMA?, identifying 64 associated genes (Supplementary Table 16), of
which17 were previously reported inref. 13. Third, weran Fine-mapped
Locus Assessment Model of Effector genes (FLAMES)?, with the aim
to get a better understanding of genes that are causally involved in
ADHD. A total of 22 genes had FLAMES scores larger than 0.05 and were
interpreted as potential effector genes, of which 14 were also tagged
by the MAGMA gene-based test and 10 were previously reported in
ref. 13. Four genes were not reported in ref. 13 but have previously
been linked to ADHD, as listed in the GWAS Catalog (https://www.ebi.
ac.uk/gwas/). Eight potential effector genes were not reported in
ref. 13 or in any ADHD-specific studies listed in the GWAS Catalog—
EMCN, STK32C,PCDH17, TCF12, PEAK1,IGFIR, CTNNA2 and ABCA12.See
Supplementary Table17 for an overview of all potential effector genes,
including Ensembl.orglinks, and refer to Supplementary Methods for
the National Center for Biotechnology Information summaries for all
ofthese genes.

Enrichment and tissue-specific expression. Gene-set analysis in
MAGMA revealed no substantial enrichment in any MSigDB v2023
gene sets after correction for multiple testing. MAGMA expression
analysis showed substantial enrichment of the GWAMA signal in gene
sets differentially expressed in late infancy. Additionally, there was
substantial enrichment in several brain tissue types, as well as in the
pituitary gland (Supplementary Figs. 2 and 3).

Next, FUMA GENE2FUNC gene-set enrichment analyses of the 204
potential ADHD risk genes mapped by FUMA exhibited substantial
enrichment in genes identified in GWAS of ADHD, cognition-related
phenotypes and risk-taking behaviors. These 204 genes were not
substantially enriched in any tissue types or in any of the Brainspan
developmental stages of brain samples (http://www.brainspan.org),
but were enriched in 29 gene sets that code for transcription factor
targets. No synapse cellular component terms or biological processes
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Fig.2|Manhattan plot of GWAMA of ADHD symptoms and ADHD diagnosis. Orange dots reflect lead SNPs. The red line represents the genome-wide significance
threshold (P < 5 x107®), adjusted for multiple comparisons of common variants across the entire genome. The blue line represents a more lenient threshold (P <1x107).

were enriched at1%false discovery rate (testing terms with atleast three
matchinginput genes in SynGO; https://www.syngoportal.org). Fora
complete overview of allenrichment results and the included gene sets,
see Supplementary Figs. 4-6 and Supplementary Methods.

Werepeated the same analyses for the 22 potential effector genes
identified by FLAMES. Again, findings were highly enriched for genes
identified in GWAS of cognition-related phenotypes and risk-taking
behaviors. The 22 genes were substantially overrepresented in gene sets
that are differentially expressed inthe frontal cortex, but notinthe ‘gen-
eraltissue’type brainorinany of the Brainspan developmental stages.
They were also enriched in 52 gene sets that code for transcription
factor targets, 13 microRNA targets, 4 Gene Ontology (GO) biological
processes, 1canonical pathway and 8 cell-type signatures. No synapse
cellular component terms or biological processes were enriched at 1%
false discovery rate (testing terms with at least three matching input
genesinSynGO). Nine genes were mapped to SynGO annotations, eight
to cellular components and nine to biological processes. Gene enrich-
ment was observedinintegral components of the postsynaptic density
membrane (g=1.46 x107%), postsynaptic density (g = 1.57 x 107%), post-
synapse (g =5.67 x10®)and synapse (¢ = 7.22 x 107%), as well as in post-
synaptic modulation of chemical synaptic transmission (g = 3.28 x107),
process in the synapse (g =3.97 x10™*) and synapse organization
(g=1.62x107%) (where g is the false discovery rate-corrected Pvalue).
For a complete overview of all enrichment results and the included
genesets, see Supplementary Figs. 7-13, Supplementary Tables 18-19
and Supplementary Methods.

Genetic correlations. We estimated genetic correlations between
ADHD\rra and 49 preselected phenotypes. Results are summarizedin
Fig.3 and Supplementary Table 19. Strong positive genetic correlations
were observed between ADHD a1 and childhood aggressive behav-
ior (ry=1.13,s.e. = 0.05) and antisocial behavior (r,=0.97,s.e. = 0.06).
The correlation of 1.13 with childhood aggressive behavior reflects a
high genetic correlation that is estimated to be greater than 1 due to
sampling variation, as correlations estimated by LDSC ingenomicSEM
are not bounded between -1and 1 (childhood aggression h*z=9.03).
Measures of smoking habits (r, = 0.46-0.60, s.e. = 0.03) and number of
children (r,=0.38, s.e. = 0.04) also showed moderate correlations, as
didratings of overall health (r,=-0.59,s.e.= 0.03), educational attain-
ment (r,=-0.55,s.e. = 0.02) and childhood1Q (r,=-0.43,s.e.= 0.06).In
general, ADHDra Showed weak-to-moderate genetic correlations
with psychopathology, including major depressive disorder (r, = 0.57,
s.e.=0.03) and autism spectrumdisorder (r,= 0.39, s.e. = 0.04). Weak

negative genetic correlations were found between ADHD gy and
alcohol intake frequency (r,=—0.28, s.e. = 0.03). Correlations with
drinks per week (r,=0.14, s.e. = 0.03) and cannabis use (r,=0.20,
s.e.=0.03) were small and positive. Ref. 26 investigated the contrast-
ing correlations for alcohol intake frequency and drinks per week.
They found evidence to suggest that this discrepancy is the result of
confounding socioeconomic status (SES) influences. ADHDgygga . Was
weakly negatively genetically correlated with birth weight (r,=-0.10,
s.e.=0.02), which confirms earlier findings of a causal relation between
birth weight and ADHD?. ADHD oyza. Was positively correlated with
childhood obesity (r,=0.21, s.e. = 0.05) and adult body mass index
(r;=0.30,s.e.=0.02). The genetic correlations estimated in ADHDy, ¢
and ADHD gz, Were very similar. The general trends were the same:
positive correlations with substance use, number of children and multi-
ple psychopathologies. Negative correlations were found for cognitive
traits, health outcomes and well being.

PGS analysis. We assessed the performance of PGSs based on ADH-
Dgymps ADHDp, 4 and ADHD oyr41 by modeling their effect on anaggre-
gated ADHD measureinthreelarge cohorts (ALSPAC, MoBaand NTR).
We meta-analyzed the results in these three cohorts, which indicated
that ADHD o performed best (8= 0.13, s.e. = 0.04), followed by
ADHDp,c (8=0.11, s.e. = 0.04) and ADHDygy,; (8=0.08, s.e.=0.03).
Explained variance within each cohort was largest for the ADHD gy a1
PGS (0.3% in MoBa, 2.2% in ALSPAC and 3.1% in NTR), which was an
increase compared to ADHDy,,, (0.2%in MoBa, 2% in ALSPAC and 2.5%
inNTR). The PGS for ADHDgy, explained 0.1%in MoBa, 1.1% in ALSPAC
and1.2%inNTR.

Discussion

We present a GWAMA of childhood ADHDygy . A total of 28 cohorts
with measures of ADHD symptom counts took part, contributing data
from multiple raters and instruments across a wide range of ages. We
meta-analyzed all continuous measures and combined these results
with results from two GWAMASs of ADHD diagnosis (ADHD ;).

We did notidentify genome-wide significant hits for ADHD symp-
toms, but estimated a genetic correlation with ADHD diagnosis
(r;=1.00,s.e.=0.06). This supports the notion that clinical ADHD is at
the extreme end of a continuous genetic liability that is indexed by

ADHD symptoms™', as previously suggested based on multivariate
twin studies”. The estimated hZ,, of ADHDsyy;, Was 0.04 (s.e. = 0.01),

which may be considered low compared to the estimated h2,, inrefs.

11,13 (0.22 and 0.14, respectively). This may be due to the heterogeneous
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Childhood aggression 2021 -
Antisocial behavior 2022

Ever smoked 2019 +

Major depressive disorder 2018
Loneliness 2019 +

Cigarettes per day 2019
Insomnia 2019

Autism spectrum disorder 2019
Number of children ever born 2016 -
Risk tolerance 2018

Waist circumference 2018 -
Type 2 diabetes 2018
Neuroticism 2018 +

BMI 2018 4

Hip circumference 2018
Coronary artery disease 2011 -
Obesity childhood 2012 -
Cannabis use 2018
Triglycerides 2010
Schizophrenia 2018

Drinks per week 2019 -

Insulin 2012

Waist-hip ratio (body mass index adjusted) 2019
Glucose 2012

Bipolar disorder 2019 -

LDL 2010

Total cholesterol 2010 -
Estrogen male 2019

Resting heart rate 2019
Anorexia nervosa 2019
Testosterone female 2019
Height 2018

Sleep duration 2018
Testosterone male 2019

Birth weight 2019

OCD 2018

HDL 2010

Age of menopause 2018 -

Head circumference 2014 -
Alcohol intake frequency 2018 -
Subjective well being 2018 +
Age of paternal death 2018 +
Intelligence 2018 +

Childhood 1Q 2014
Educational attainment 2018 —
Age of maternal death 2018
Overall health rating 2019
Age of smoking initiation 2018
Age at first birth 2016

0.5 1.0
Iy (95% CI)

Fig. 3| Genetic correlations with external phenotypes. Dots indicate genetic correlation estimates and bars indicate 95% confidence intervals. Study-specific
information for each genetic correlation can be found in Supplementary Table 10. Genetic correlation estimates and s.e. are listed in Supplementary Table 20.

measurement error and bias in phenotyping by including symptom
measures from different raters, and at different ages, which could
subsequently suppress SNP heritability.

By meta-analyzing GWASs of ADHD symptoms and ADHD diagno-
sis, we found 2,039 genome-wide significant variantsin 39 independent
loci, of which 17 were new. The studies discussed in refs. 11,13 identified
12 and 27 independent lociin 2019 and 2023, respectively. This shows
that combining ADHD symptom counts with diagnosis can be effective
inidentifying implicated genetic variants for ADHD. This is of value
because ADHD symptom measures have been widely collected. The
estimated genomicSEM thP of ADHD gypa Was 0.11 (s.e. = 0.01) com-
paredto 0.14in ADHDp,c. Thus, by including ADHDgyp in the ADHDp
results, thP decreased slightly. We believe thisis due to the heteroge-
neous measurement error and bias in the ADHDqy,,» phenotyping'. The
same canbe observed whenlooking at the differencesin héNP between
ADHDp,,c from 2019 (thP = 0.22), which was strict in its definition of
ADHD cases, and ADHD,,; from 2023 (thP = 0.14), which was slightly
more lenientinits definition of ADHD cases.

MAGMA analyses identified 64 potential ADHD risk genes, which
were substantially enriched in genes previously identified in GWASs of
cognitive phenotypes and risk-taking behaviors. The total GWAS signal
was substantially differentially expressed in several brain-specific tis-
suetypes, general brain tissue types and the pituitary gland, as well as
in late infancy Brainspan brain samples (www.brainspan.org). FUMA

mapped significant loci to 204 genes. Again, genes were enriched

in gene sets reported by previous GWASs of cognitive behavior,
risk-seeking behavior, and brain development. FUMA enrichment
analyses further revealed 29 transcription factor targets that may be
ofinterest for ADHD.

Toidentify causal pathways from SNPs to ADHD, we ran FLAMES?,
which identifies likely effector genes. FLAMES reported 22 potential
effector genes, of which14 overlapped with the MAGMA genes, 12 were
previously reported in ref. 13 and 8 were neither previously linked to
ADHD nor reported in the GWAS Catalog. These 22 genes were sub-
stantially overrepresented in gene sets differentially expressed in the
frontal cortex, enriched in 4 GO biological processes related to neural
and physical development, 52 transcription factor targets, 13 microRNA
targets, 8 different cell-type signatures, 4 synapse cellular components
and 3 synapticbiological processes. Inref. 13, the set of potential ADHD
risk genes was substantially enriched among genes upregulated during
early embryonicbrain development, but this result was not replicated
in the current study. A common theme is that implicated genes are
enriched in processes that are involved in neural development and
functioning. The results provide several new avenues to investigate to
gainmoreinsightsinto the etiology of ADHD. The results may also pro-
vide usefulinformation for the 22 potential effector genes compared
to the 204 genes identified by FUMA positional mapping, expression
quantitative traitlocus mapping and chromatininteraction mapping. It
islikely that this difference results from the differencein strategies used
by both methods. FUMA maps every gene for which some functional
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link isknown to exist, whereas FLAMES weighs all these measurements
and only prioritizes genes if they are clearly more likely causal genes
than the other genes in the locus. Our findings indicate that FLAMES
can help toidentify functional pathways that may remain hidden with
other approaches due to a reduction of noise from noncausal genes
in the set of prioritized genes, which decreases the power to detect
enrichmentin functional gene sets.

Estimates of genetic correlations between ADHD ogra and other
phenotypes showed substantial genetic correlations with all exam-
ined psychopathological traits except anorexia nervosa. Most strik-
ing were the genetic correlations of 1.13 with childhood aggressive
behaviorand 0.97 with antisocial behavior. Previous studies reported
moderate-to-strong phenotypic correlations across sex-specific,
rater-specific, age-specific and instrument-specific assessments
between aggressive behavior and attention problems and hyper-
activity”®. When interpreting these strong genetic correlations, it is
important to distinguish betweenbiological pleiotropy and statistical
pleiotropy”. Inbiological pleiotropy, the same genetic variants physi-
cally underlie both traits. In statistical pleiotropy, the genetic variants
in one trait predict the effect of different genetic variants in another
trait. Itis likely that both types of pleiotropy contribute to the genetic
correlation of around 1. We observed a negative genetic correlation
between ADHD and alcohol intake frequency and a positive correlation
between ADHD and number of drinks per week. The details in ref. 26
suggest that SES effects confound these different genetic correlations.
We found amoderate genetic correlation withsmoking behaviors, buta
small correlation with cannabis use. We observed negative correlations
with several cognitive traits, such as (childhood) IQ, verbal-numerical
reasoning and educational attainment. Similar toa GWAS of childhood
aggression', genetic correlations with multiple hormone levels were
around zero. Finally, we found a small negative correlation with birth
weight, but a weak positive correlation with childhood obesity and
adult body mass index. These estimated genetic correlations were
very similar to those estimated with ADHD,,. The genetic correlations
suggest wide pleiotropic effects of variants involved in ADHD. This is
illustrative of the polygenetic nature of most behavioral, cognitive and
mental health traits. It also indicates that genetic factorshavearolein
the comorbidity of psychopathological disorders.

To assess the performance of PGSs based on ADHDgyyp, ADHD 46
and ADHDgygra, We modeled their effect on an aggregated ADHD
measure in three cohorts (ALSPAC, MoBa and NTR). These results
indicated that adding ADHD symptom counts increased the power
ofthe PGSinthe three cohorts. The differences were small, especially
between ADHDy,;,cand ADHD g4, . INNTR data, the explained variance
increased from 2.5% for the ADHDy,, PGS to 3.1% for the ADHD gygpaic
PGS. Therefore, we recommend using the ADHD g4, datato construct
PGS in future work, especially when predicting ADHD symptoms.

Combining data collected using different instruments and by
different raters helps to increase the sample size, and with that the
statistical power of our analyses. This is illustrated by the increase in
detected genetic variants associated with ADHD in ADHDgygga - The
mainbenefit ofincluding multiple measures, ratings and instruments
is that they are not dependent on a single context. However, we also
observed that the genetic effects from ADHDygy,,, were smaller com-
pared to ADHDy,,c, which may have suppressed SNP heritability. Our
study raises the question of how to optimally make use of repeated
measures and multiple raters and instruments. In general, GWAMAs
could highly benefit from theincreased power that could be acquired
by including a wider range of measures.

Assessments of ADHD inindividuals from non-European ancestry
wererare in each of theincluded cohorts. Because of the low number of
assessments, we excluded non-European individuals from our analy-
ses. We know that results from European ancestry GWASs often also
substantially predict differences in non-European ancestry groups,
but effect sizes are diluted toward zero®. Regrettably, this means

that knowledge generated by these types of studies risks benefiting
individuals of European ancestry more than those from diverse back-
grounds. To better understand the etiology of ADHD across individu-
als and backgrounds, it is important to continue ongoing efforts to
increase the inclusivity of GWAS samples.

Inconclusion, the current study adds new insightinto the genetic
etiology of ADHD. By meta-analyzing GWAS results from symptom
counts of ADHD in children with a diagnosis of ADHD, we identified new
genome-wide significantlociand genes. The number of genome-wide
significant genetic variants that are implicated in ADHD provides
further insight into the polygenic etiology of ADHD. The 22 potential
effector genes identified by FLAMES offer insights into several bio-
logical processes that may have a causal rolein ADHD etiology, provid-
ing avenues for further research. The genetic correlations with other
phenotypes further indicate the wide pleiotropic effects of genetic
variants and the role that genetic variants has in the co-occurrence
with mental health traits.
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Methods

Ethics and inclusion statement

This study is the result of a large collaborative effort among multiple
clinical and population-based cohorts. Researchers and principal
investigators (Pls) representing the individual cohorts wereinvolvedin
the design and execution of the study. Cohort-specific GWAS analyses
were performed locally by local researchers. Local researchers and
PIs were included as co-authors in consultation with the Pls of each
included cohort. Data collections for the cohorts were approved by
local ethics committees. Study approval was obtained from the Central
Ethics Committee on Research Involving Human Subjects of the VU
University Medical Center, Amsterdam (NTR, 25May 2007 and ACTION
2013/41 and 2014.252), an institutional review board (IRB) certified
by the US Office of Human Research Protections (IRB—IRB00002991
under Federalwide Assurance (FWA00017598); IRB/institute codes).

Sample and cohorts

Childhood cohortsthat collaborate within the ‘Aggressionin Children:
Unraveling Gene-Environment Interplay to Inform Treatment and
Intervention Strategies’ (ACTION) consortium'*** and EAGLE consor-
tium* took part in the meta-analysis of ADHD symptom counts (ADH-
Dsymp)- Cohorts assessed ADHD symptomsin children and adolescents
aged1.5to18yearsandalsoincluded adult retrospective assessments.
Each cohort followed a standardized operating protocol (available at
https://www.action-euproject.eu/content/data-protocols and detailed
inSupplementary Information). Cohorts could contribute one or sev-
eral univariate GWASs. A separate analyses were performed for every
unique combination of rater, instrument and age (so that each GWAS
included amaximum of one measure for each individual), with a mini-
mum of 450 observations per GWAS. Table 1 presents an overview of all
included cohorts. Extended information on the cohorts can be found
in Supplementary Table 8 and Supplementary Note. Assessments of
individuals of non-European ancestry were limited for varying reasons,
and analyses were restricted to individuals of European ancestry. In
total, 28 cohorts contributed 154 GWASs, resultinginatotal of 290,134
observations from 70,953 unique individuals (Supplementary Table 2).

Measurement of ADHD symptoms

ADHD symptoms in children and adolescents were rated by moth-
ers, fathers, teachers and the individuals themselves. Additionally,
two cohorts (QIMR and COGA) included retrospective assessments
of (pre-)adolescent ADHD symptoms from self-report or mater-
nal report. To maximize sample size, we included measurements
of ADHD symptoms from multiple instruments. In total, 20 ADHD
symptom assessment instruments were included in the meta-analysis
(Supplementary Table 3). The most commonly used instruments were
the Achenbach System of Empirically Based Assessment® and the
Strengths and Difficulties Questionnaire™.

Genotypingand quality control

Genotyping was performed within each cohort using common geno-
typing arrays (Supplementary Table 4), followed by cohort-specific
quality control (QC) based onindividual-based and variant-based call
rate, Hardy-Weinberg equilibrium, excessive heterozygosity rates and
minor allele frequency (Supplementary Table 5). A total of 78.6% of the
cohorts imputed their genotypes to 1000 Genomes Project (1000G)
phase 3 version 5, while the other cohorts used 1000G phase 1 version
3 asthereference set for the imputation (Supplementary Table 6). All
genotypes were mapped to build 37 of the Human Genome Reference
Consortium assembly (GRCh37).

GWAS model

Each cohort performed a univariate GWAS where ADHD symptoms
were regressed on the SNP genotype, with age, sex and first five
ancestry-based principal components as fixed effects, and, if necessary,

cohort-specific covariates (Supplementary Table 7). Three cohorts
(BREATHE, INMA and GINIplus/LISA) did not include PCs in their uni-
variate GWAS. These were relatively small and homogeneous GWAS
samples. Heterogeneity tests and forest plotsindicated no clear outly-
ingresults for these three cohorts. The genetic correlation between the
full GWAMA and one excluding these cohorts was almost one (r, = 0.99,
s.e.=0.13), and both GWAMAs implicated the same genetic loci and
lead SNPs. To correct for dependency between observations within
univariate analyses, cohorts with related individuals applied a mixed
linear model™ or asandwich correction of the standard errors’®.

GWASs were stratified by (1) rater, (2) instrument and (3) age, so
that observations within aunivariate GWAS were independent, with a
minimum stratum sample size of 450 observations. Intotal, summary
statistics for 154 univariate GWAS were uploaded. Descriptive statistics
for each uploaded GWAS are shown in Supplementary Table 8. Each
cohort also supplied information on the degree of sample overlap
and phenotypic correlation between their univariate analyses. These
statistics allowed us to account for dependency between observations
within cohorts.

Pre-GWAMA QC

Summary statistics from each GWAS were subjected to QC using the
EasyQC software package®. SNPs with agenotypingrate below 95% were
removed. We applied variable QC filters on minor allele frequency and
Hardy Weinberg equilibrium Pvalue tailored to the sample size. Respec-
tive cutoffs of INFO > 0.6 and INFO >0.7 were applied to SNPs that were
imputed using MACH and IMPUTE*, Reported allele frequencies were
compared to the allele frequency in an imputation-matched refer-
ence population and variants with an absolute difference in allele fre-
quency larger than 0.2 were removed. Supplementary Table 9 reports
the number of SNPs before and after QC. We assessed heterogeneity
by calculating the M statistic for each cohort and ADHDy,c. Results
indicated that the contribution of the TEDS cohort was substantially
weaker compared to the other cohorts. Plotting the M statistic against
the average study effect size for the lead SNPs showed that itis unlikely
that TEDS biased the results, whichis also indicated by the forest plots
for alllead SNPs (Supplementary Fig.1and Supplementary Dataland
2). Results also indicated that ADHDy,,c was substantially stronger in
driving thelead SNP effects compared to the other cohorts. Thisis not
unexpected, given that the ADHD diagnosis isamuch narrower defini-
tion of ADHD than ADHD symptoms.

Meta-analysis of ADHD symptoms

The meta-analysis approach is equal to the method described in ref.
19. Due to sample overlap between multiple GWASs from the same
cohort, the covariance between GWAS test statistics is a function of
sample overlap andatruly shared genetic signal®. To correct for sample
overlap during the meta-analysis, we applied amodified version of the
multivariate meta-analysis approach mentioned in ref. 40, where we
calculated the expected CTI* based on the observed sample overlap
and phenotypic covariance, as reported by the cohorts. Finally, because
the sum of the number of observations (n,;) was an overestimate of
the effective sample size (n.;), we approximated the effective sample
size as proposed in ref. 19—n ¢ = v/nT CTI"" /n. In this notation, nis a
vector of sample sizes and CTl is the matrix of CTIs. SNPs with minor
allele frequency <0.01, n.;<15,000, or observed in only one cohort
were removed from further analyses. SNP heritability (h,,) was esti-
mated by genomic Structural Equation Modeling in R*.

Stratified meta-analyses of ADHD symptoms

After meta-analyzing all ADHD symptoms GWASs (ADHDyy,,»), We per-
formed stratified meta-analyses—rater specific, age specificand instru-
ment specific. For each stratified meta-analysis, we calculated genetic
correlations (r,) with other stratified meta-analysis results using LDSC
ingenomicSEM. To ensure sufficient power for the genetic correlations,
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rywas calculated across stratified assessments of ADHD if the z score
for the corresponding GWAMA was 4 or higher.

Meta-analysis with case-control ADHD GWAS

Inthe next step, we meta-analyzed our ADHDgy\,y GWAMA with a GWAS
of ADHD diagnosis”. In ADHDy,,, cases are defined as clinically diag-
nosed with ADHD or prescribed medication specific to ADHD. ADHDy, .
included data from the Lundbeck Foundation Initiative for Integra-
tive Psychiatric Research, the Psychiatric Genomics Consortium and
deCode. Datawere obtained for adults and children, resultingina total
of 38,691 cases and 186,843 controls.

For the meta-analysis, we first adjusted the test statistics and
sample sizes for ADHDgy\» and ADHDy,,,; as proposed in ref. 11. The
lifetime population prevalence of ADHD was assumed to be 5%*. SNP
heritability for ADHDsyp, and ADHDy, ¢, and r,and CTIbetween ADH-
Dsywr and ADHDy,,c were estimated by genomicSEM in R*. We
meta-analyzed the results from ADHDsy,,, and ADHD,,c based on the
approach outlined in ref. 40. We specified the effective sample sizes
for ADHDy,cassuggestedinref. 19— ngg = — 4 — .SNP heritability

("Cascs Mcontrols )
was estimated using LDSC in genomicSEM*. There is no sample overlap
between ADHDgyy,r and ADHD 6.

Follow-up analyses

Fine mapping and gene-based tests. To identify independent
genome-wide significantlociand credible sets for each locus, we used
FUMA?®, FINEMAP?, PAINTOR* and CAVIARBF*. One causal variant
was assumed per locus. InFINEMAP, PAINTOR and CAVIARBEF, variants
located within1 Mb of index variants wereincluded in the analyses. All
SNPs within 95% of the total posterior probability of the variants were
included in the credible sets if they were tagged in at least two of the
three methods. InFUMA, linkage disequilibrium blocks ofindependent
significant SNPs within 250 kb were merged into asingle genomiclocus.
These loci were mapped to protein-coding genes if they were located
within amaximum distance of 10 kb of anindependent significant SNP,
or if a variant was annotated to the gene based on expression quanti-
tative trait locus data or chromatin interaction data from the human
brain (see Supplementary Methods for the included datasets). These
are the same settings as applied inref. 13.

Next, gene-based tests were runin MAGMA**. MAGMA gene-based
tests combine Pvalues frommultiple SNPsinside agene to obtainatest
statistic for each gene (2.,,.), whileaccounting forincomplete linkage
disequilibrium between SNPs. To this end, a list 0f 18,296 genes and
their start-positions and end-positions, and preformatted genotypes,
based on 1000G phase 3, were obtained from the MAGMA website
(Supplementary Methods). We applied a Bonferroni correction for
multiple testing at a = 0.05/18,296 =2.733 x 10°°,

It remains a challenge to identify which genes are causally
involved in ADHD. FLAMES was recently developed with the goal
of predicting the most likely effector genes from GWAS results®.
FLAMES is a new framework that combines SNP-to-gene evidence
and convergence-based evidence, outputting a single score per gene
from fine-mapped GWAS loci. We performed statistical fine mapping
using FINEMAP version 1.4.1 (ref. 22), and a linkage disequilibrium
reference panel of 100,000 unrelated UK Biobank participants of
European descent. Given that the GWAMA contains cohorts that do
not belong to the UK Biobank, we restricted the maximum number of
causalvariantsinalocus modeled by FINEMAP to1, to avoid overfitting.
As aresult, each locus also leads to a maximum of one (most) likely
effector gene per locus. We ran FLAMES (version 1.0.0) by inputting
pathway naive PoPS scores* for our GWAMA, the FUMA-defined loci
and corresponding fine-mapped credible sets, resulting in a single
FLAMES score per gene. Genes with FLAMES scores above 0.05 were
interpreted as potential effector genes, as suggested by the FLAMES
authors. For more information on FLAMES and the included functional

annotations, seeref. 25. Functional annotation and enrichment analysis
were done for a set of genes with FLAMES scores above 0.05.

Enrichment and pathway analyses. We performed MAGMA gene-set
analysesin the full ADHD gyegar, results. Gene property analysis was per-
formed to test relationships between tissue-specific gene expression
profiles (see Supplementary Methods for an overview) and ADHD-gene
associations. Next, genes mapped from credible sets by FUMA, and
the set of potential effector genes identified with FLAMES were used
in gene-set enrichment analyses. We ran hypergeometric tests using
FUMA genes2func to assess if genes of interest are overrepresented
in any of the predefined gene sets (see Supplementary Methods for
all included gene sets). We used SynGO* v1.2 (‘20231201’) to test for
enrichmentin genes encoding for proteinsinvolved in synaptic cellular
components and biological pathways. The brain expressed background
set was used, containing 18,035 unique genes.

Genetic correlations. We computed genetic correlations between ADH-
Doverau and 49 preselected traits, including cognition and externalizing
behaviors, psychopathologies, anthropometric measures, metabolic,
hormone and health outcomes (Supplementary Table 10). Phenotypes
were selected based on established hypotheses or were at least nominally
significantly (P < 0.05) genetically correlated with ADHDpsg,010 (ref. 11).
Following ref. 43, we restricted genetic correlations to external pheno-
types for which the zscores of the LDSC-based A2, , are 24.

PGS analysis. We assessed the performance of PGSs based on ADH-
Dgymps ADHDp 4 and ADHD oy ra By modeling their effect onan aggre-
gated ADHD measureinthreelarge cohorts (ALSPAC, MoBaand NTR).
PGSswere constructed using PRScs (--n_burnin10.000, --n_iter 25000),
with summary statistics that excluded the target PGS cohort. We cre-
ated an aggregated ADHD measure by combining the zscores of indi-
vidual measures into a single standardized ADHD measure. We then
performed regression analysesin Rwith ADHD as dependent variable,
PGS asindependent variable, and included sex, genotyping platform
andtengenomicPCsas covariates. Because NTRincludes data on family
members, we controlled for dependency between observations by mul-
tilevel modeling inIme4 with arandom intercept for families. Results
fromthe three cohorts were meta-analyzed with the function metaplus
in R. Explained variance was calculated separately in each cohort by
comparing the explained variance of models with or without the PGSs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Summary statistics for ADHDgyyp and ADHDgyera, are available
for download through GWAS Catalog (ebi.ac.uk/gwas/studies/
GCST90568440 and ebi.ac.uk/gwas/studies/GCST90568441). ADH-
Dpiac SUMmary statistics are available for download at the Psychiatric
Genomics Consortium (PGC) website (https://www.med.unc.edu/pgc/
download-results/). Raw data are available upon request through the
individual participating cohorts. Individual cohort GWAS summary
statistics are available uponrequest through the corresponding author.
Datasets used for gene mapping and hypergeometric gene-set testsin
FUMA are listed in Supplementary Methods.

Code availability

The complete analysis plan is available for download at https://www.
action-euproject.eu/sites/default/files/Action%20AGG%20AP%20SOP.
pdf. The N-weighted GWAMA code is available via GitHub at https://
github.com/baselmans/multivariate_. GWAMA and via Zenodo at
https://doi.org/10.5281/zenod0.15862079 (ref.44.For alist of software
and versions used, see Supplementary Methods.
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