nature genetics

Article

https://doi.org/10.1038/s41588-025-02295-y

Genome-wide association meta-analysis of childhood ADHD symptoms and diagnosis identifies new loci and potential effector genes

Received: 20 March 2024

Accepted: 12 July 2025

Published online: 17 September 2025

A list of authors and their affiliations appears at the end of the paper

We performed a genome-wide association meta-analysis (GWAMA) of 290,134 attention-deficit/hyperactivity disorder (ADHD) symptom measures of 70,953 unique individuals from multiple raters, ages and instruments (ADHD_{SYMP}). Next, we meta-analyzed the results with a study of ADHD diagnosis (ADHD_{OVERALL}). ADHD_{SYMP} returned no genome-wide significant variants. We show that the combined ADHD_{OVERALL} GWAMA identified 39 independent loci, of which 17 were new. Using a recently developed gene-mapping method, Fine-mapped Locus Assessment Model of Effector genes, we identified 22 potential ADHD effector genes implicating several new biological processes and pathways. Moderate negative genetic correlations ($r_g < -0.40$) were observed with multiple cognitive traits. In three cohorts, polygenic scores (PGSs) based on ADHD_{OVERALL} outperformed PGSs based on ADHD symptoms and diagnosis alone. Our findings support the notion that clinical ADHD is at the extreme end of a continuous liability that is indexed by ADHD symptoms. We show that including ADHD symptom counts helps to identify new genes implicated in ADHD.

Attention-deficit/hyperactivity disorder (ADHD) is, for many individuals, a persistent neurodevelopmental disorder^{1,2}. ADHD is characterized by the following three core symptoms: hyperactivity, impulsivity and inattention³. It affects around 5% of children and adolescents and 2.5% of adults worldwide⁴. ADHD may be associated with serious consequences for affected individuals, their families and society at large, with symptoms persisting across multiple settings, that is, at home, at school and elsewhere^{5,6}. This disorder has a predominantly genetic etiology, involving both common and rare genetic variants⁷. The mean estimated heritability across 37 twin studies of ADHD was 74%⁸⁻¹⁰.

In 2019, a genome-wide association meta-analysis (GWAMA) of clinical ADHD, hereafter referred to as ADHD $_{DIAG2019}$, which included data from 20,183 cases and 35,191 controls, identified the first 12 genome-wide significant loci associated with ADHD 11 . The study reported that 22% of the variance in ADHD could be explained by all measured single nucleotide polymorphisms (SNPs). They also performed meta-analyses with data from deCode, 23andMe and the Early

Genetics and Lifecourse Epidemiology (EAGLE) consortium¹². Four independent loci reached the genome-wide significance threshold in all three meta-analyses. Interestingly, most independent significant loci, 15, were found in the meta-analysis with EAGLE, based on a quantitative assessment of attention problems, implying that this can boost the power to identify associated variants. In 2023, ADHD_{DIAG2019} was updated, almost doubling the number of cases¹³. In this updated GWAMA, ADHD_{DIAG}, the definition of cases was broader, for example, by including individuals who used ADHD prescription medication. The study reported 27 independent significant loci and estimated that 14% of the variance in ADHD could be attributed to the included SNPs. The broader definition of ADHD diagnosis not only resulted in a larger sample and therefore more power to detect implicated genetic variants, but also increased the heterogeneity of the phenotype, which may explain the decrease in estimated SNP heritability¹⁴.

There is an increasing recognition that ADHD symptom counts in nonclinical samples can tap into the same genetic construct as clinically an arrival construct as clinically arrival construct as clinically an arrival construct as clinically arrival construct as clinical construct and construct arrival cons

⊠e-mail: c.m.vanderlaan@uu.nl

Table 1 | Cohort descriptives

Cohort	n _{unique}	n _{GWASs}	n _{obs}	Instrument	Raters	Minimum age	Maximum age	Mean age
ABCD	1,154	5	4,471	18	M,S,T	5	13	8.46
ALSPAC	7,308	7	33,973	18	M,T	7	18	10.99
BREATHE	1,638	1	1,638	13	Т	7	11	9.23
CATSS	7,094	9	33,052	1,7,8,17,18	F,M,S	8	19	13.66
CHDS	626	4	2,429	12,16,17	M,S	10	16	13.72
COGA	2,072	1	2,072	13	S	R	R	R
COPSAC	459	1	459	18	М	6	9	8.5
Dunedin	882	2	1,069	16	М	13	15	14.06
E-risk	1,859	1	1,859	14	S	18	18	18
FinnTwin	1,138	5	4,998	15	F,S,T	10	18	13.80
Gen-R	2,654	8	13,646	2,3,4,17	F,M,S,T	3	12	6.95
GINIplus/LISA	1,439	2	2,582	18	M,S	9	17	12.43
GSMS	730	3	1,605	9	М	9	17	13.12
IBG	1,052	4	2,519	3	М	7	18	12.83
INMA	541	1	541	13	T	3	7	5.06
INSchool	3,557	21	15,813	3,4,6,18	F,M,S,T	5	17	9.94
MCTFR	2,040	2	3,662	13	T	11	14	13.26
МоВа	8,200	4	22,703	3,20	М	1	8	3.93
MSUTR	1,280	3	3,517	3,4,6	M,S,T	6	9	7.83
MUSP	1,242	3	3,624	3,6	M,T	4	15	11.21
NFBC1986	3,433	1	3,433	6,19	S	16	16	16.01
NTR	6,228	16	52,615	3,4,5,6,11	F,M,S,T	2	17	8.49
QIMR	3,978	3	5,528	20	M,S	9	18	14.01
Raine study	1,484	4	5,407	3	M,S	5	15	9.63
TCHAD	647	5	4,268	3,6	M,S	8	17	13.48
TEDS	6,030	26	49,985	16	M,S,T	1	18	8.89
TRAILS	1,354	9	10,657	3,4,6	M,S,T	10	18	13.44
VTSABD	834	3	1,469	9	М	8	18	14.08
Total	70,953	154	290,138					

Instrument codes—1, ASEBA-BCL; 2, ASEBA-BPM; 3, ASEBA-CBCL; 4, ASEBA-TRF; 5, ASEBA-YASR; 6, ASEBA-YSR; 7, ASRS; 8, A-TAC; 9, CAPA; 10. Conner's; 11, Devereux; 12, DISC; 13, DSM-IV; 14, DSM-V; 15, MPNI; 16, RBPC; 17, Rutter/Conners; 18, SDQ; 19, SWAN; 20, RS-DBD. For the full descriptives, see Supplementary Tables 2 and 8. M, mother report; F, father report; S, self-report; T. teacher report: R. retrospective.

diagnosed ADHD, supporting the notion that clinical ADHD is at the extreme end of a continuous measure of ADHD symptoms 15,16 . This hypothesis was initially suggested based on multivariate twin studies 17 . In support, the genetic correlation ($r_{\rm g}$) between quantitative ADHD symptom counts 12 and ADHD $_{\rm DIAG2019}$ (ref. 11) was estimated to be 0.97 (s.e. = 0.21, P = 2.66 \times 10 $^{-6}$), suggesting that combining these measures is a viable strategy to increase statistical power in ADHD GWASs. This was further supported by the increased number of genome-wide significant loci in the meta-analysis of ADHD $_{\rm DIAG2019}$ and EAGLE, as compared to ADHD $_{\rm DIAG2019}$ alone, and to meta-analyses of ADHD $_{\rm DIAG2019}$, deCode and 23 and Me.

Here we combined information from 28 population-based cohorts in a GWAMA of continuous ADHD symptom scores, comprising a total of 70,953 participants (Table 1). The measures included repeated assessments (longitudinal data) by multiple raters (maternal, paternal, teachers and self-assessments) and instruments across ages (range = 2–18 years), for a total of 290,134 measures. We also included retrospective self-report data. The details in ref. 18 showed that using repeated measures greatly improved GWAS power over using a single aggregated outcome. We meta-analyzed all available data into a cross-rater/cross-age/cross-instrument GWAMA of ADHD symptoms (ADHD symp),

taking into consideration the dependency between multiple assessments within individuals 19 . Analyzing measures from multiple raters and ages may further increase the power of the analyses because of an increase in the validity of the ADHD symptom measures. Next, we estimated the genetic correlations ($r_{\rm g}$) between ADHD $_{\rm SYMP}$ and the meta-analysis of case-control samples 13 , and meta-analyzed ADHD $_{\rm SYMP}$ with ADHD $_{\rm DIAG}$ (ADHD $_{\rm OVERALL}$). Finally, we performed fine mapping and gene-based tests based on ADHD $_{\rm SYMP}$ and ADHD $_{\rm OVERALL}$, performed follow-up enrichment and pathway analyses, estimated genetic correlations between the GWAMA and a set of predefined outcomes from cognitive and externalizing behavior domains and assessed out-of-sample polygenic score (PGS) prediction in three cohorts.

Results

ADHD_{SYMP} GWAMA

We first meta-analyzed the effect of each SNP across all available univariate GWASs of quantitative ADHD measures. Based on an effective sample size of 120,092, the estimated $h_{\rm SNP}^2$ of ADHD_{SYMP} was 0.04 (s.e. = 0.01; z = 8.12). The mean χ^2 statistic was 1.09 with a linkage disequilibrium score regression (LDSC) intercept of 1.01 (s.e. = 0.01), indicating that there was no or very limited inflation in test statistics

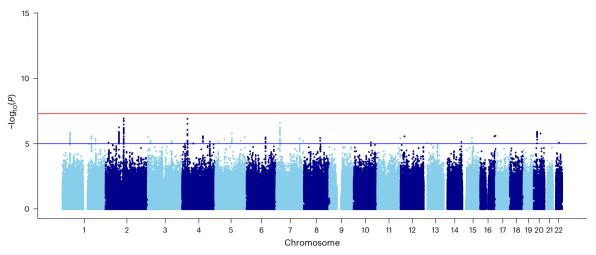


Fig. 1| **Manhattan plot of GWAMA of ADHD symptoms.** The red line represents the genome-wide significance threshold ($P < 5 \times 10^{-8}$), adjusted for multiple comparisons of common variants across the entire genome. The blue line represents a more lenient threshold ($P < 1 \times 10^{-5}$).

due to confounding biases, such as population stratification. Rather, the GWAMA most likely captured the polygenic nature of childhood ADHD symptoms. The GWAMA of ADHD symptoms did not identify any genome-wide significant SNPs (Fig. 1 and Supplementary Table 11).

Stratified meta-analyses of ADHD symptoms

After meta-analyzing all univariate ADHD symptoms GWASs, we performed the following stratified meta-analyses: rater specific, age specific and instrument specific. For most stratified results, h^2z was <4. The genetic correlation between the two largest stratified GWAMAs, namely teacher-rated ADHD symptoms and mother-rated ADHD symptoms, was 0.72 (s.e. = 0.13), indicating that there are some rater differences in the effects of genetic variants, which likely depend on the different contexts in which teachers and parents observe the behavior. Forest plots for the lead SNPs in all significant loci with the effect sizes from all stratified GWAMAs did not reveal any clear patterns, because the smaller sample sizes led to larger standard errors (Supplementary Data 1).

Meta-analysis with ADHD diagnosis GWAS

SNP heritability estimated with genomicSEM was 0.13 (s.e. = 0.01) for ADHD $_{DIAG}$. The estimated genetic correlation between ADHD $_{SYMP}$ and ADHD $_{DIAG}$ was 1.00 (s.e. = 0.06). The cross-trait intercept (CTI) was not substantially different from zero and was subsequently constrained to zero in the following meta-analysis.

Because the point estimate of the genetic correlation between $ADHD_{SYMP}$ and $ADHD_{DIAG}$ was not substantially different from 1, we constrained the genetic correlation at unity when pre-adjusting the weights and z scores for the meta-analysis of ADHD_{SYMP} and ADHD_{DIAG}. A total of 6,571,852 SNPs were included in the meta-analysis. The SNP heritability of ADHD_{OVERALL} was 0.11 (s.e. = 0.01), with a mean χ^2 statistic of 1.52. The LDSC-intercept and ratio were 1.02 (s.e. = 0.01) and 0.03 (s.e. = 0.02), respectively, indicating that approximately 3% of the signal might be due to confounding factors. Figure 2 shows a Manhattan plot of ADHD_{OVERALL}. A total of 2,039 SNPs reached genome-wide significance $(P < 5 \times 10^{-8})$, of which 644 were also reported in ADHD_{DIAG} and 1,395 were new. The 2,039 SNPs corresponded to 43 independent lead SNPs in 39 independent significant loci, identified with FUMA (https:// fuma.ctglab.nl)²⁰, CAVIARBF²¹, FINEMAP²² and PAINTOR²³ (for locus plots, see Supplementary Data 1 and 2). Of these 39 loci, 22 were also reported in ADHD_{DIAG} and 17 were new. All 17 new loci were suggestive $(P < 1 \times 10^{-5})$ in ADHD_{DIAG}. This suggests that including ADHD_{SYMP} led to an increase in power that pushed these 17 loci over the genome-wide significance threshold. There was some fluctuation in genetic effects among ADHD_{SYMP} cohorts (Supplementary Data 2). Five independent significant loci in ADHD_{DIAG} did not replicate in ADHD_{OVERALL}. Of these five loci, all lead SNPs were still suggestive in ADHD_{OVERALL}, two loci (on chromosomes 3 and 7) had opposite directions of effects, and three loci (on chromosomes 3, 4 and 8) had effects in the same direction (Supplementary Tables 12 and 13).

Follow-up analyses

Fine mapping and gene-based tests. Follow-up analyses for ADHD_{SYMP} $did\,not\,reveal\,any\,implicated\,pathways\,or\,genes.\,For\,ADHD_{OVERALL}, gene$ mapping in FUMA mapped the 43 lead SNPs in 39 independent genomic risk loci to 204 associated genes (Supplementary Table 15), of which 45 were also reported in ref. 13. Second, gene-based tests were run in MAGMA²⁴, identifying 64 associated genes (Supplementary Table 16), of which 17 were previously reported in ref. 13. Third, we ran Fine-mapped Locus Assessment Model of Effector genes (FLAMES)²⁵, with the aim to get a better understanding of genes that are causally involved in ADHD. A total of 22 genes had FLAMES scores larger than 0.05 and were interpreted as potential effector genes, of which 14 were also tagged by the MAGMA gene-based test and 10 were previously reported in ref. 13. Four genes were not reported in ref. 13 but have previously been linked to ADHD, as listed in the GWAS Catalog (https://www.ebi. ac.uk/gwas/). Eight potential effector genes were not reported in ref. 13 or in any ADHD-specific studies listed in the GWAS Catalog-EMCN, STK32C, PCDH17, TCF12, PEAK1, IGF1R, CTNNA2 and ABCA12. See Supplementary Table 17 for an overview of all potential effector genes, including Ensembl.org links, and refer to Supplementary Methods for the National Center for Biotechnology Information summaries for all of these genes.

Enrichment and tissue-specific expression. Gene-set analysis in MAGMA revealed no substantial enrichment in any MSigDB v2023 gene sets after correction for multiple testing. MAGMA expression analysis showed substantial enrichment of the GWAMA signal in gene sets differentially expressed in late infancy. Additionally, there was substantial enrichment in several brain tissue types, as well as in the pituitary gland (Supplementary Figs. 2 and 3).

Next, FUMA GENE2FUNC gene-set enrichment analyses of the 204 potential ADHD risk genes mapped by FUMA exhibited substantial enrichment in genes identified in GWAS of ADHD, cognition-related phenotypes and risk-taking behaviors. These 204 genes were not substantially enriched in any tissue types or in any of the Brainspan developmental stages of brain samples (http://www.brainspan.org), but were enriched in 29 gene sets that code for transcription factor targets. No synapse cellular component terms or biological processes

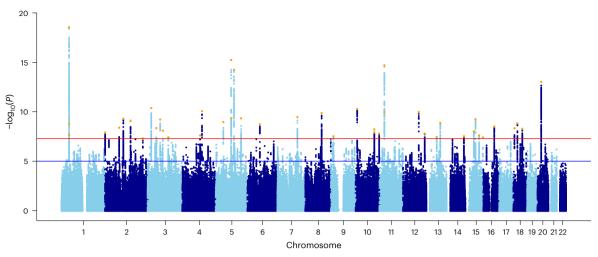


Fig. 2 | **Manhattan plot of GWAMA of ADHD symptoms and ADHD diagnosis.** Orange dots reflect lead SNPs. The red line represents the genome-wide significance threshold ($P < 5 \times 10^{-8}$), adjusted for multiple comparisons of common variants across the entire genome. The blue line represents a more lenient threshold ($P < 1 \times 10^{-5}$).

were enriched at 1% false discovery rate (testing terms with at least three matching input genes in SynGO; https://www.syngoportal.org). For a complete overview of all enrichment results and the included gene sets, see Supplementary Figs. 4–6 and Supplementary Methods.

We repeated the same analyses for the 22 potential effector genes identified by FLAMES. Again, findings were highly enriched for genes identified in GWAS of cognition-related phenotypes and risk-taking behaviors. The 22 genes were substantially overrepresented in gene sets that are differentially expressed in the frontal cortex, but not in the 'general tissue' type brain or in any of the Brainspan developmental stages. They were also enriched in 52 gene sets that code for transcription factor targets, 13 microRNA targets, 4 Gene Ontology (GO) biological processes, 1 canonical pathway and 8 cell-type signatures. No synapse cellular component terms or biological processes were enriched at 1% false discovery rate (testing terms with at least three matching input genes in SynGO). Nine genes were mapped to SynGO annotations, eight to cellular components and nine to biological processes. Gene enrichment was observed in integral components of the postsynaptic density membrane $(a = 1.46 \times 10^{-3})$, postsynaptic density $(a = 1.57 \times 10^{-3})$, postsynapse $(a = 5.67 \times 10^{-3})$ and synapse $(a = 7.22 \times 10^{-3})$, as well as in postsynaptic modulation of chemical synaptic transmission ($q = 3.28 \times 10^{-5}$), process in the synapse ($q = 3.97 \times 10^{-4}$) and synapse organization $(q = 1.62 \times 10^{-3})$ (where q is the false discovery rate-corrected P value). For a complete overview of all enrichment results and the included gene sets, see Supplementary Figs. 7-13, Supplementary Tables 18-19 and Supplementary Methods.

Genetic correlations. We estimated genetic correlations between ADHD_{OVERALL} and 49 preselected phenotypes. Results are summarized in Fig. 3 and Supplementary Table 19. Strong positive genetic correlations were observed between ADHD_{OVERALL} and childhood aggressive behavior $(r_g = 1.13, \text{ s.e.} = 0.05)$ and antisocial behavior $(r_g = 0.97, \text{ s.e.} = 0.06)$. The correlation of 1.13 with childhood aggressive behavior reflects a high genetic correlation that is estimated to be greater than 1 due to sampling variation, as correlations estimated by LDSC in genomicSEM are not bounded between -1 and 1 (childhood aggression $h^2z = 9.03$). Measures of smoking habits ($r_g = 0.46-0.60$, s.e. = 0.03) and number of children ($r_g = 0.38$, s.e. = 0.04) also showed moderate correlations, as did ratings of overall health ($r_g = -0.59$, s.e. = 0.03), educational attainment $(r_g = -0.55, \text{s.e.} = 0.02)$ and childhood IQ $(r_g = -0.43, \text{s.e.} = 0.06)$. In general, ADHD_{OVERALL} showed weak-to-moderate genetic correlations with psychopathology, including major depressive disorder ($r_g = 0.57$, s.e. = 0.03) and autism spectrum disorder (r_g = 0.39, s.e. = 0.04). Weak

negative genetic correlations were found between ADHD_{OVERALL} and alcohol intake frequency ($r_g = -0.28$, s.e. = 0.03). Correlations with drinks per week ($r_g = 0.14$, s.e. = 0.03) and cannabis use ($r_g = 0.20$, s.e. = 0.03) were small and positive. Ref. 26 investigated the contrasting correlations for alcohol intake frequency and drinks per week. They found evidence to suggest that this discrepancy is the result of $confounding \, socioe conomic \, status \, (SES) \, influences. \, ADHD_{\text{OVERALL}} \, was$ weakly negatively genetically correlated with birth weight ($r_g = -0.10$, $s.e.=0.02), which confirms \, earlier \, findings \, of \, a \, causal \, relation \, between \,$ birth weight and ADHD²⁷. ADHD_{OVERALL} was positively correlated with childhood obesity ($r_g = 0.21$, s.e. = 0.05) and adult body mass index $(r_{\rm g}=0.30,{\rm s.e.}=0.02)$. The genetic correlations estimated in ADHD_{DIAG} and ADHD_{OVERALL} were very similar. The general trends were the same: positive correlations with substance use, number of children and multiple psychopathologies. Negative correlations were found for cognitive traits, health outcomes and well being.

PGS analysis. We assessed the performance of PGSs based on ADHDSYMP, ADHDDIAG and ADHDOVERALL by modeling their effect on an aggregated ADHD measure in three large cohorts (ALSPAC, MoBa and NTR). We meta-analyzed the results in these three cohorts, which indicated that ADHDOVERALL performed best (β = 0.13, s.e. = 0.04), followed by ADHDDIAG (β = 0.11, s.e. = 0.04) and ADHDSYMP (β = 0.08, s.e. = 0.03). Explained variance within each cohort was largest for the ADHDOVERALL PGS (0.3% in MoBa, 2.2% in ALSPAC and 3.1% in NTR), which was an increase compared to ADHDDIAG (0.2% in MoBa, 2% in ALSPAC and 2.5% in NTR). The PGS for ADHDSYMP explained 0.1% in MoBa, 1.1% in ALSPAC and 1.2% in NTR.

Discussion

We present a GWAMA of childhood ADHD $_{\rm SYMP}$. A total of 28 cohorts with measures of ADHD symptom counts took part, contributing data from multiple raters and instruments across a wide range of ages. We meta-analyzed all continuous measures and combined these results with results from two GWAMAs of ADHD diagnosis (ADHD $_{\rm DIAG}$)^{11,13}.

We did not identify genome-wide significant hits for ADHD symptoms, but estimated a genetic correlation with ADHD diagnosis ($r_{\rm g}$ = 1.00, s.e. = 0.06). This supports the notion that clinical ADHD is at the extreme end of a continuous genetic liability that is indexed by ADHD symptoms^{15,16}, as previously suggested based on multivariate twin studies¹⁷. The estimated $h_{\rm SNP}^2$ of ADHD_{SYMP} was 0.04 (s.e. = 0.01), which may be considered low compared to the estimated $h_{\rm SNP}^2$ in refs. 11,13 (0.22 and 0.14, respectively). This may be due to the heterogeneous

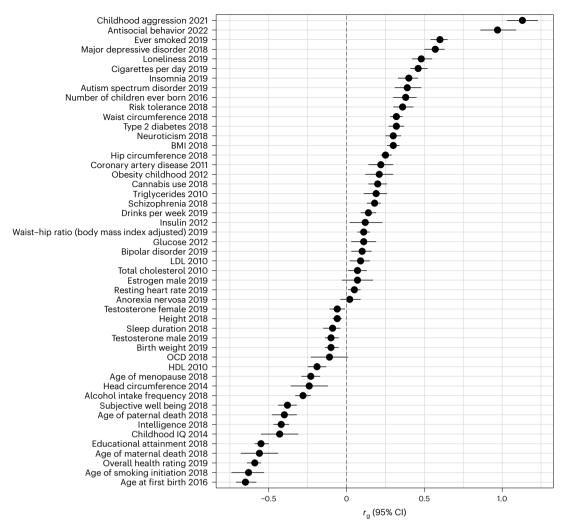


Fig. 3 | Genetic correlations with external phenotypes. Dots indicate genetic correlation estimates and bars indicate 95% confidence intervals. Study-specific information for each genetic correlation can be found in Supplementary Table 10. Genetic correlation estimates and s.e. are listed in Supplementary Table 20.

measurement error and bias in phenotyping by including symptom measures from different raters, and at different ages, which could subsequently suppress SNP heritability.

By meta-analyzing GWASs of ADHD symptoms and ADHD diagnosis, we found 2,039 genome-wide significant variants in 39 independent loci, of which 17 were new. The studies discussed in refs. 11,13 identified 12 and 27 independent loci in 2019 and 2023, respectively. This shows that combining ADHD symptom counts with diagnosis can be effective in identifying implicated genetic variants for ADHD. This is of value because ADHD symptom measures have been widely collected. The estimated genomic SEM $h_{\rm SNP}^2$ of ADHD $_{\rm OVERALL}$ was 0.11 (s.e. = 0.01) compared to 0.14 in ADHD $_{\rm DIAG}$. Thus, by including ADHD $_{\rm SYMP}$ in the ADHD $_{\rm DIAG}$ results, $h_{\rm SNP}^2$ decreased slightly. We believe this is due to the heterogeneous measurement error and bias in the ADHD $_{\rm SYMP}$ phenotyping 14. The same can be observed when looking at the differences in $h_{\rm SNP}^2$ between ADHD $_{\rm DIAG}$ from 2019 ($h_{\rm SNP}^2$ = 0.22), which was strict in its definition of ADHD cases, and ADHD $_{\rm DIAG}$ from 2023 ($h_{\rm SNP}^2$ = 0.14), which was slightly more lenient in its definition of ADHD cases.

MAGMA analyses identified 64 potential ADHD risk genes, which were substantially enriched in genes previously identified in GWASs of cognitive phenotypes and risk-taking behaviors. The total GWAS signal was substantially differentially expressed in several brain-specific tissue types, general brain tissue types and the pituitary gland, as well as in late infancy Brainspan brain samples (www.brainspan.org). FUMA mapped significant loci to 204 genes. Again, genes were enriched

in gene sets reported by previous GWASs of cognitive behavior, risk-seeking behavior, and brain development. FUMA enrichment analyses further revealed 29 transcription factor targets that may be of interest for ADHD.

To identify causal pathways from SNPs to ADHD, we ran FLAMES²⁵, which identifies likely effector genes. FLAMES reported 22 potential effector genes, of which 14 overlapped with the MAGMA genes, 12 were previously reported in ref. 13 and 8 were neither previously linked to ADHD nor reported in the GWAS Catalog. These 22 genes were substantially overrepresented in gene sets differentially expressed in the frontal cortex, enriched in 4 GO biological processes related to neural and physical development, 52 transcription factor targets, 13 microRNA targets, 8 different cell-type signatures, 4 synapse cellular components and 3 synaptic biological processes. In ref. 13, the set of potential ADHD risk genes was substantially enriched among genes upregulated during early embryonic brain development, but this result was not replicated in the current study. A common theme is that implicated genes are enriched in processes that are involved in neural development and functioning. The results provide several new avenues to investigate to gain more insights into the etiology of ADHD. The results may also provide useful information for the 22 potential effector genes compared to the 204 genes identified by FUMA positional mapping, expression quantitative trait locus mapping and chromatin interaction mapping. It is likely that this difference results from the difference in strategies used by both methods. FUMA maps every gene for which some functional

link is known to exist, whereas FLAMES weighs all these measurements and only prioritizes genes if they are clearly more likely causal genes than the other genes in the locus. Our findings indicate that FLAMES can help to identify functional pathways that may remain hidden with other approaches due to a reduction of noise from noncausal genes in the set of prioritized genes, which decreases the power to detect enrichment in functional gene sets.

Estimates of genetic correlations between ADHD_{OVERALL} and other phenotypes showed substantial genetic correlations with all examined psychopathological traits except anorexia nervosa. Most striking were the genetic correlations of 1.13 with childhood aggressive behavior and 0.97 with antisocial behavior. Previous studies reported moderate-to-strong phenotypic correlations across sex-specific, rater-specific, age-specific and instrument-specific assessments between aggressive behavior and attention problems and hyperactivity²⁸. When interpreting these strong genetic correlations, it is important to distinguish between biological pleiotropy and statistical pleiotropy²⁹. In biological pleiotropy, the same genetic variants physically underlie both traits. In statistical pleiotropy, the genetic variants in one trait predict the effect of different genetic variants in another trait. It is likely that both types of pleiotropy contribute to the genetic correlation of around 1. We observed a negative genetic correlation between ADHD and alcohol intake frequency and a positive correlation between ADHD and number of drinks per week. The details in ref. 26 suggest that SES effects confound these different genetic correlations. We found a moderate genetic correlation with smoking behaviors, but a small correlation with cannabis use. We observed negative correlations with several cognitive traits, such as (childhood) IQ, verbal-numerical reasoning and educational attainment. Similar to a GWAS of childhood aggression¹⁹, genetic correlations with multiple hormone levels were around zero. Finally, we found a small negative correlation with birth weight, but a weak positive correlation with childhood obesity and adult body mass index. These estimated genetic correlations were very similar to those estimated with $ADHD_{DIAG}$. The genetic correlations suggest wide pleiotropic effects of variants involved in ADHD. This is illustrative of the polygenetic nature of most behavioral, cognitive and mental health traits. It also indicates that genetic factors have a role in the comorbidity of psychopathological disorders.

To assess the performance of PGSs based on ADHD $_{SYMP}$, ADHD $_{DIAG}$ and ADHD $_{OVERALL}$, we modeled their effect on an aggregated ADHD measure in three cohorts (ALSPAC, MoBa and NTR). These results indicated that adding ADHD symptom counts increased the power of the PGS in the three cohorts. The differences were small, especially between ADHD $_{DIAG}$ and ADHD $_{OVERALL}$. In NTR data, the explained variance increased from 2.5% for the ADHD $_{DIAG}$ PGS to 3.1% for the ADHD $_{OVERALL}$ PGS. Therefore, we recommend using the ADHD $_{OVERALL}$ data to construct PGS in future work, especially when predicting ADHD symptoms.

Combining data collected using different instruments and by different raters helps to increase the sample size, and with that the statistical power of our analyses. This is illustrated by the increase in detected genetic variants associated with ADHD in ADHD overall. The main benefit of including multiple measures, ratings and instruments is that they are not dependent on a single context. However, we also observed that the genetic effects from ADHD $_{\rm SYMP}$ were smaller compared to ADHD $_{\rm DIAG}$, which may have suppressed SNP heritability. Our study raises the question of how to optimally make use of repeated measures and multiple raters and instruments. In general, GWAMAs could highly benefit from the increased power that could be acquired by including a wider range of measures.

Assessments of ADHD in individuals from non-European ancestry were rare in each of the included cohorts. Because of the low number of assessments, we excluded non-European individuals from our analyses. We know that results from European ancestry GWASs often also substantially predict differences in non-European ancestry groups, but effect sizes are diluted toward zero³⁰. Regrettably, this means

that knowledge generated by these types of studies risks benefiting individuals of European ancestry more than those from diverse backgrounds. To better understand the etiology of ADHD across individuals and backgrounds, it is important to continue ongoing efforts to increase the inclusivity of GWAS samples.

In conclusion, the current study adds new insight into the genetic etiology of ADHD. By meta-analyzing GWAS results from symptom counts of ADHD in children with a diagnosis of ADHD, we identified new genome-wide significant loci and genes. The number of genome-wide significant genetic variants that are implicated in ADHD provides further insight into the polygenic etiology of ADHD. The 22 potential effector genes identified by FLAMES offer insights into several biological processes that may have a causal role in ADHD etiology, providing avenues for further research. The genetic correlations with other phenotypes further indicate the wide pleiotropic effects of genetic variants and the role that genetic variants has in the co-occurrence with mental health traits.

Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41588-025-02295-y.

References

- Faraone, S. V., Biederman, J. & Mick, E. The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studies. *Psychol. Med.* 36, 159–165 (2006).
- Kan, K.-J. et al. Genetic and environmental stability in attention problems across the lifespan: evidence from the Netherlands twin register. J. Am. Acad. Child Adolesc. Psychiatry 52, 12–25 (2013).
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (American Psychiatric Association Publishing, 2013).
- 4. Faraone, S. V. et al. Attention-deficit/hyperactivity disorder. *Nat. Rev. Dis. Primers* **1**, 15020 (2015).
- Caci, H. et al. Daily life impairments associated with self-reported childhood/adolescent attention-deficit/hyperactivity disorder and experiences of diagnosis and treatment: results from the European Lifetime Impairment Survey. Eur. Psychiatry 29, 316–323 (2014).
- Caci, H. et al. Daily life impairments associated with childhood/ adolescent attention-deficit/hyperactivity disorder as recalled by adults: results from the European Lifetime Impairment Survey. CNS Spectr. 20, 112–121 (2015).
- 7. Faraone, S. V. et al. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis. Primers 10, 11 (2024).
- Faraone, S. V. & Larsson, H. Genetics of attention deficit hyperactivity disorder. Mol. Psychiatry 24, 562–575 (2019).
- Kan, K.-J., van Beijsterveldt, C. E. M., Bartels, M. & Boomsma, D. I. Assessing genetic influences on behavior: informant and context dependency as illustrated by the analysis of attention problems. Behav. Genet. 44, 326–336 (2014).
- Merwood, A. et al. Different heritabilities but shared etiological influences for parent, teacher and self-ratings of ADHD symptoms: an adolescent twin study. *Psychol. Med.* 43, 1973–1984 (2013).
- Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. *Nat. Genet.* 51, 63–75 (2019).
- Middeldorp, C. M. et al. A genome-wide association meta-analysis of attention-deficit/hyperactivity disorder symptoms in population-based pediatric cohorts. J. Am. Acad. Child Adolesc. Psychiatry 55, 896–905 (2016).

- Demontis, D. et al. Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nat. Genet. 55, 198–208 (2023).
- Wang, X. et al. Polygenic risk prediction: why and when out-of-sample prediction R² can exceed SNP-based heritability. Am. J. Hum. Genet. 110, 1207–1215 (2023).
- Larsson, H., Anckarsater, H., Råstam, M., Chang, Z. & Lichtenstein, P. Childhood attention-deficit hyperactivity disorder as an extreme of a continuous trait: a quantitative genetic study of 8,500 twin pairs. J. Child Psychol. Psychiatry 53, 73–80 (2012).
- Levy, F., Hay, D. A., McStephen, M., Wood, C. & Waldman,

 Attention-deficit hyperactivity disorder: a category or a continuum? Genetic analysis of a large-scale twin study. J. Am. Acad. Child Adolesc. Psychiatry 36, 737–744 (1997).
- Derks, E. M. et al. Genetic and environmental influences on the relation between attention problems and attention deficit hyperactivity disorder. *Behav. Genet.* 38, 11–23 (2008).
- Rönnegård, L. et al. Increasing the power of genome wide association studies in natural populations using repeated measures – evaluation and implementation. *Methods Ecol. Evol.* 7, 792–799 (2016).
- 19. Ip, H. F. et al. Genetic association study of childhood aggression across raters, instruments, and age. *Transl. Psychiatry* 11, 413 (2021).
- Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).
- Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B. & Eskin, E. Identifying causal variants at loci with multiple signals of association. *Genetics* 198, 497–508 (2014).
- Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. *Bioinformatics* 32, 1493–1501 (2016).
- Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. *PLoS Genet.* 10, e1004722 (2014).

- De Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. *PLoS Comput. Biol.* 11. e1004219 (2015).
- Schipper, M. et al. Prioritizing effector genes at trait-associated loci using multimodal evidence. *Nat. Genet.* 57, 323–333 (2025).
- Marees, A. T. et al. Potential influence of socioeconomic status on genetic correlations between alcohol consumption measures and mental health. *Psychol. Med.* 50, 484–498 (2020).
- Groen-Blokhuis, M. M., Middeldorp, C. M., van Beijsterveldt, C. E. M. & Boomsma, D. I. Evidence for a causal association of low birth weight and attention problems. J. Am. Acad. Child Adolesc. Psychiatry 50, 1247–1254 (2011).
- 28. Bartels, M. et al. Childhood aggression and the co-occurrence of behavioural and emotional problems: results across ages 3–16 years from multiple raters in six cohorts in the EU-ACTION project. *Eur. Child Adolesc. Psychiatry* **27**, 1105–1121 (2018).
- 29. Carey, G. Inference about genetic correlations. *Behav. Genet.* **18**, 329–338 (1988).
- 30. Carlson, C. S. et al. Generalization and dilution of association results from European GWAS in populations of non-European ancestry: the PAGE study. *PLoS Biol.* **11**, e1001661 (2013).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g., a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2025, corrected publication 2025

Camiel M. van der Laan @ 1.2.121 , Hill F. Ip , Marijn Schipper @ 3, Jouke-Jan Hottenga @ 1, Beate St Pourcain @ 4.5.6, Tetyana Zayats^{7,8,9}, René Pool ¹, Eva M. L. Krapohl¹⁰, Isabell Brikell¹¹, María Soler Artigas ^{12,13,14,15}, Judit Cabana-Domínguez (12,13,14,15), Natalia Llonga 12,13,14,15), Ilja M. Nolte (16), Koen Bolhuis (17), Teemu Palviainen (18), 18) Hadi Zafarmand 19,20, Scott Gordon 12, Fazil Aliev22, S. Alexandra Burt3, Carol A. Wang 12,25, Gretchen Saunders6, Ville Karhunen^{27,28}, Daniel E. Adkins^{29,30}, Richard Border³¹, Roseann E. Peterson © ^{32,33}, Joseph A. Prinz³⁴, Elisabeth Thiering^{35,36}, Natàlia Vilor-Tejedor ^{37,38,39,40}, Tarunveer S. Ahluwalia^{41,42,43}, Andrea Allegrini¹⁰, Kaili Rimfeld^{10,44}, Qi Chen¹¹, Yi Lu ¹¹, Joanna Martin¹¹, Rosa Bosch^{12,45}, Josep Antoni Ramos-Quiroga ^{12,13,14,46}, Alexander Neumann ¹⁷, Judith Ensink^{47,48}, Katrina L. Grasby ²¹, José J. Morosoli ^{49,50,51}, Xiaoran Tong⁵², Shelby Marrington⁵³, James G. Scott^{54,55,56}, Andrey A. Shabalin³⁰, Robin Corley⁵⁷, Luke M. Evans © ^{57,58}, Karen Sugden^{34,59}, Silvia Alemany © ^{12,13,14}, Lærke Sass⁴¹, Rebecca Vinding^{41,60}, Erik A. Ehli ⁶¹, Fiona A. Hagenbeek ^{1,18,62}, Eske M. Derks ⁶³, Henrik Larsson ^{61,64}, Harold Snieder 10 16, Charlotte Cecil 10 17,65,66, Alyce M. Whipp 18, Tellervo Korhonen 18, Eero Vuoksimaa 18, Richard J. Rose 67, André G. Uitterlinden $\bullet^{66,68,69}$, Jan Haavik \bullet^7 , Jennifer R. Harris \bullet^{70} , Øyvind Helgeland \bullet^{71} , Stefan Johansson \bullet^{72} , Gun Peggy S. Knudsen ® 70, Pal Rasmus Njolstad ® 72, Qing Lu⁷³, Alina Rodriguez ® 27,74,75,76, Anjali K. Henders 77, Abdullah Mamun⁷⁸, Jackob M. Najman⁵³, Sandy Brown⁷⁹, Christian Hopfer⁸⁰, Kenneth Krauter⁸¹, Chandra A. Reynolds^{57,82,83}, Andrew Smolen⁵⁷, Michael Stallings^{57,83}, Sally Wadsworth⁵⁷, Tamara L. Wall⁷⁹, Lindon Eaves^{33,84}, Judy L. Silberg^{33,84}, Allison Miller ® 85, Alexandra Havdahl ® 86,87, Sabrina Llop^{88,89}, Maria-Jose Lopez-Espinosa $oldsymbol{\mathbb{D}}^{88,89,90}$, Klaus Bønnelykke $oldsymbol{\mathbb{D}}^{41,122}$, Jordi Sunyer $oldsymbol{\mathbb{D}}^{91,92,93}$, Louise Arseneault $oldsymbol{\mathbb{D}}^{94}$, Marie Standl 35 , Joachim Heinrich 19 35,95,96, Joseph Boden 19 7, John Pearson 19 8, John Horwood 19 7, Martin Kennedy 19 85, Richie Poulton 99, Hermine H. Maes^{33,84,100}, John Hewitt^{57,83}, William E. Copeland¹⁰¹, Christel M. Middeldorp © ^{47,48,54,55,62,102,103}, Gail M. Williams⁵³, Naomi Wray (10^{77,104}, Marjo-Riitta Järvelin (10^{27,28,105}, Matt McGue (10²⁶, William Iacono²⁶, Avshalom Caspi 34,83,94,106, Terrie E. Moffitt 83,94,106, Andrew J. O. Whitehouse 107, Craig E. Pennell 24,25, Kelly L. Klump 3, Chang Jiang⁷³, Danielle M. Dick ^{22,84,108,109}, Ted Reichborn-Kjennerud ^{83,110}, Nicholas G. Martin ²¹, Sarah E. Medland D^{21,51,111}, Tanja Vrijkotte^{62,102,112}, Jaakko Kaprio D^{18,113}, Henning Tiemeier D^{17,114}, George Davey Smith D^{4,115},

Catharina A. Hartman ^{© 116}, Albertine J. Oldehinkel ^{© 116}, Miquel Casas^{45,46,117,118}, Marta Ribasés ^{© 12,13,14,15}, Paul Lichtenstein ^{© 11}, Sebastian Lundström^{119,120}, Robert Plomin ^{© 10}, Meike Bartels ^{© 1,62}, Michel G. Nivard ^{© 1,4} & Dorret I. Boomsma ^{© 1,3,62,102}

Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. 2Netherlands Institute for the Study of Crime and Law Enforcement, Amsterdam, the Netherlands. 3 Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. 4MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK. 5Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands. 6Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands. 7K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway. 8Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. 9Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA. 10 Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. 11Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. 12Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain, 13 Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain. 14 Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain. 15 Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain. 16 Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. ¹⁷Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, the Netherlands. ¹⁸Institute for Molecular Medicine Finland (FIMM), HiLife, University of Helsinki, Helsinki, Finland. 19 Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands. 20 Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health Research Institute, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands. 21 QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. 22 Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA. 23Department of Psychology, Michigan State University, East Lansing, MI, USA. 24School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, New South Wales, Australia. 25 Hunter Medical Research Institute, Newcastle, New South Wales, Australia. ²⁶Department of Psychology, University of Minnesota, Minneapolis, MN, USA. ²⁷MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK. 28 Faculty of Medicine, University of Oulu, Oulu, Finland. 29 Department of Sociology, College of Social and Behavioral Science, University of Utah, Salt Lake City, UT, USA. 30 Department of Psychiatry, School of Medicine, University of Utah, Salt Lake City, UT, USA. 31 Departments of Neurology and Computer Science, University of California, Los Angeles, Los Angeles, CA, USA. 32 Department of Psychiatry and Behavioral Sciences, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA. 33Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA. 34Center for Genomic and Computational Biology, Duke University, Durham, NC, USA. ³⁵Institute of Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany. ³⁶Ludwig-Maximilians-University of Munich, Dr. von Hauner Children's Hospital, Division of Metabolic Diseases and Nutritional Medicine, Munich, Germany. 37 Barcelona Brain Research Center, Pasqual Maragall Foundation (FPM), Barcelona, Spain. 38 Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. 39Hospital del Mar Research Institute, Barcelona, Spain. 40Department of Human Genetics, Radboud University Medical Center, Nijgmegen, the Netherlands. 41COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, Copenhagen, Denmark. 42Steno Diabetes Center Copenhagen, Herlev, Denmark. 43The Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark. 44Department of Psychology, Royal Holloway University of London, London, UK. 45SJD MIND Schools Program, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain. 46 Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain. ⁴⁷Department of Child and Adolescent Psychiatry and Psychology, Amsterdam UMC, Amsterdam, the Netherlands. 48 Levvel, Academic Center for Child and Adolescent Psychiatry, Amsterdam, the Netherlands. 49 Department of Clinical, Educational, and Health Psychology, University College London, London, UK. 50 Mental Health and Neuroscience Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. 51 School of Psychology, University of Queensland, Brisbane, Queensland, Australia. 52 Center for Innovation in Public Health, University of Kentucky, Lexington, KY, USA. 53 School of Public Health, The University of Queensland, Herston, Queensland, Australia. 54 Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia. 55 Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health Service, Brisbane, Queensland, Australia. 56 Queensland Centre for Mental Health Research, Wacol, Queensland, Australia. 57 Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA. 58 Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA. 59Department of Psychology and Neuroscience, Duke University, Durham, NC, USA. ⁶⁰Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark. ⁶¹Avera McKennan Hospital, Sioux Falls, SD, USA. ⁶²Amsterdam Public Health Research Institute, Amsterdam, the Netherlands. 63 Translational Neurogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. 64School of Medical Sciences, Orebro University, Orebro, Sweden. 65Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands. 66 Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands. 67 Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA. 68 Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands. 69 Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Leiden, the Netherlands. 70Centre for Fertility and Health, The Norwegian Institute of Public Health, Oslo, Norway. 71Department of Genetics and Bioinformatics, Division of Health Data and Digitalization, The Norwegian Institute of Public Health, Bergen, Norway. 72 Department of Clinical Science, University of Bergen, Bergen, Norway. 73Department of Biostatistics, University of Florida, Gainesville, FL, USA. 74Anglia Ruskin University, School of Allied Health and Social Care, Chelmsford, UK. 75A*STAR, Agency for Science, Technology and Research, Institute of Human Development and Potential, Singapore, Singapore. 76Department of Psychological Medicine, National University of Singapore, Singapore, Singapore. 77Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia. 78 Institute for Social Science Research, University of Queensland, Brisbane, Queensland, Australia. 79 Department of Psychiatry, University of California, San Diego, San Diego, CA, USA. 80 University of Colorado School of Medicine, Aurora, CO, USA. 81Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA. 82Department of Psychology, University of California, Riverside, Riverside, CA, USA. 83 Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA. 84Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA. 85Department of Pathology and Biomedical Science, and Carney Centre for Pharmacogenomics, University of Otago, Christchurch, Christchurch, New Zealand. 86 PsychGen Centre

for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway, 87 Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway, 88 Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain, ⁸⁹Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP). Madrid, Spain, ⁹⁰Department of Nursing, Universitat de València, Valencia, Spain. 91 SGlobal, Barcelona Institute for Global Health, Barcelona, Spain. 92 Universitat Pompeu Fabra (UPF), Barcelona, Spain. 93 CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. 94 Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. 95 Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University of Munich Medical Center, Ludwig-Maximilians-Universität München, Munich, Germany. 96 Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia. 97 Christchurch Health and Development Study, Department of Psychological Medicine, University of Otago, Christchurch, Christchurch, New Zealand. 98 Biostatistics and Computational Biology Unit, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand. 99 Dunedin Multidisciplinary Health and Development Research Unit, University of Otago, Dunedin, New Zealand. 100 Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA. 101 Department of Psychiatry, College of Medicine, University of Vermont, Burlington, VT, USA. 102 Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands. 103 Arkin Mental Health Care, Amsterdam, the Netherlands. 104 Queensland Brain Institute, Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia, 105 Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK. 106 Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA. 107 The Kids Research Institute Australia, University of Western Australia, Perth, Western Australia, Australia. 108 Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA. 109 College Behavioral and Emotional Health Institute, Virginia Commonwealth University, Richmond, VA, USA. 110 Institute of Clinical Medicine, University of Oslo, Oslo, Norway. 111School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia. 112 Department of Public and Occupational Health, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands. ¹¹³Department of Public Health, Medical Faculty, University of Helsinki, Helsinki, Finland. ¹¹⁴Department of Social and Behavioral Science, Harvard TH Chan School of Public Health, Boston, MA, USA. 115Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK. 116Interdisciplinary Center Psychopathology and Emotion regulation (ICPE), Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. 117 Fundació d'Investigació Sant Pau, Barcelona, Spain. 118 Instituto Para el Desarrollo de Terapias Avanzadas en Neurociencias (IDETAN), Barcelona, Spain. 119 Region Skåne, Psychiatry, Habilitation & Aid, Child and Adolescent Psychiatry, Malmö, Sweden. 120 Centre for Ethics, Law and Mental Health, University of Gothenburg, Gothenburg, Sweden. 121 Present address: Department of Methodology and Statistics, Universiteit Utrecht, Utrecht, the Netherlands. 122 Present address: Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark. ⊠e-mail: c.m.vanderlaan@uu.nl

Methods

Ethics and inclusion statement

This study is the result of a large collaborative effort among multiple clinical and population-based cohorts. Researchers and principal investigators (PIs) representing the individual cohorts were involved in the design and execution of the study. Cohort-specific GWAS analyses were performed locally by local researchers. Local researchers and PIs were included as co-authors in consultation with the PIs of each included cohort. Data collections for the cohorts were approved by local ethics committees. Study approval was obtained from the Central Ethics Committee on Research Involving Human Subjects of the VU University Medical Center, Amsterdam (NTR, 25 May 2007 and ACTION 2013/41 and 2014.252), an institutional review board (IRB) certified by the US Office of Human Research Protections (IRB—IRB00002991 under Federalwide Assurance (FWA00017598); IRB/institute codes).

Sample and cohorts

Childhood cohorts that collaborate within the 'Aggression in Children: Unraveling Gene-Environment Interplay to Inform Treatment and Intervention Strategies' (ACTION) consortium^{19,28,31} and EAGLE consortium32 took part in the meta-analysis of ADHD symptom counts (ADH- D_{SYMP}). Cohorts assessed ADHD symptoms in children and adolescents aged 1.5 to 18 years and also included adult retrospective assessments. Each cohort followed a standardized operating protocol (available at https://www.action-euproject.eu/content/data-protocols and detailed in Supplementary Information). Cohorts could contribute one or several univariate GWASs. A separate analyses were performed for every unique combination of rater, instrument and age (so that each GWAS included a maximum of one measure for each individual), with a minimum of 450 observations per GWAS. Table 1 presents an overview of all included cohorts. Extended information on the cohorts can be found in Supplementary Table 8 and Supplementary Note. Assessments of individuals of non-European ancestry were limited for varying reasons, and analyses were restricted to individuals of European ancestry. In total, 28 cohorts contributed 154 GWASs, resulting in a total of 290,134 observations from 70,953 unique individuals (Supplementary Table 2).

Measurement of ADHD symptoms

ADHD symptoms in children and adolescents were rated by mothers, fathers, teachers and the individuals themselves. Additionally, two cohorts (QIMR and COGA) included retrospective assessments of (pre-)adolescent ADHD symptoms from self-report or maternal report. To maximize sample size, we included measurements of ADHD symptoms from multiple instruments. In total, 20 ADHD symptom assessment instruments were included in the meta-analysis (Supplementary Table 3). The most commonly used instruments were the Achenbach System of Empirically Based Assessment³³ and the Strengths and Difficulties Questionnaire³⁴.

Genotyping and quality control

Genotyping was performed within each cohort using common genotyping arrays (Supplementary Table 4), followed by cohort-specific quality control (QC) based on individual-based and variant-based call rate, Hardy—Weinberg equilibrium, excessive heterozygosity rates and minor allele frequency (Supplementary Table 5). A total of 78.6% of the cohorts imputed their genotypes to 1000 Genomes Project (1000G) phase 3 version 5, while the other cohorts used 1000G phase 1 version 3 as the reference set for the imputation (Supplementary Table 6). All genotypes were mapped to build 37 of the Human Genome Reference Consortium assembly (GRCh37).

GWAS model

Each cohort performed a univariate GWAS where ADHD symptoms were regressed on the SNP genotype, with age, sex and first five ancestry-based principal components as fixed effects, and, if necessary,

cohort-specific covariates (Supplementary Table 7). Three cohorts (BREATHE, INMA and GINIplus/LISA) did not include PCs in their univariate GWAS. These were relatively small and homogeneous GWAS samples. Heterogeneity tests and forest plots indicated no clear outlying results for these three cohorts. The genetic correlation between the full GWAMA and one excluding these cohorts was almost one (r_g = 0.99, s.e. = 0.13), and both GWAMAs implicated the same genetic loci and lead SNPs. To correct for dependency between observations within univariate analyses, cohorts with related individuals applied a mixed linear model³⁵ or a sandwich correction of the standard errors³⁶.

GWASs were stratified by (1) rater, (2) instrument and (3) age, so that observations within a univariate GWAS were independent, with a minimum stratum sample size of 450 observations. In total, summary statistics for 154 univariate GWAS were uploaded. Descriptive statistics for each uploaded GWAS are shown in Supplementary Table 8. Each cohort also supplied information on the degree of sample overlap and phenotypic correlation between their univariate analyses. These statistics allowed us to account for dependency between observations within cohorts.

Pre-GWAMA QC

Summary statistics from each GWAS were subjected to QC using the EasyQC software package³⁷. SNPs with a genotyping rate below 95% were removed. We applied variable QC filters on minor allele frequency and Hardy Weinberg equilibrium Pvalue tailored to the sample size. Respective cutoffs of INFO > 0.6 and INFO > 0.7 were applied to SNPs that were imputed using MACH and IMPUTE³⁸. Reported allele frequencies were compared to the allele frequency in an imputation-matched reference population and variants with an absolute difference in allele frequency larger than 0.2 were removed. Supplementary Table 9 reports the number of SNPs before and after QC. We assessed heterogeneity by calculating the M statistic for each cohort and ADHD_{DIAG}. Results indicated that the contribution of the TEDS cohort was substantially weaker compared to the other cohorts. Plotting the M statistic against the average study effect size for the lead SNPs showed that it is unlikely that TEDS biased the results, which is also indicated by the forest plots for all lead SNPs (Supplementary Fig. 1 and Supplementary Data 1 and 2). Results also indicated that ADHD_{DIAG} was substantially stronger in driving the lead SNP effects compared to the other cohorts. This is not unexpected, given that the ADHD diagnosis is a much narrower definition of ADHD than ADHD symptoms.

Meta-analysis of ADHD symptoms

The meta-analysis approach is equal to the method described in ref. 19. Due to sample overlap between multiple GWASs from the same cohort, the covariance between GWAS test statistics is a function of sample overlap and a truly shared genetic signal ³⁹. To correct for sample overlap during the meta-analysis, we applied a modified version of the multivariate meta-analysis approach mentioned in ref. 40, where we calculated the expected CTI ³⁹ based on the observed sample overlap and phenotypic covariance, as reported by the cohorts. Finally, because the sum of the number of observations ($n_{\rm obs}$) was an overestimate of the effective sample size ($n_{\rm eff}$), we approximated the effective sample size as proposed in ref. $19-n_{\rm eff}=\sqrt{\mathbf{n}^{\rm T}}$ CTI $^{-1}\sqrt{\mathbf{n}}$. In this notation, \mathbf{n} is a vector of sample sizes and CTI is the matrix of CTIs. SNPs with minor allele frequency <0.01, $n_{\rm eff}$ < 15,000, or observed in only one cohort were removed from further analyses. SNP heritability ($h_{\rm SNP}^2$) was estimated by genomic Structural Equation Modeling in R⁴¹.

Stratified meta-analyses of ADHD symptoms

After meta-analyzing all ADHD symptoms GWASs (ADHD_{SYMP}), we performed stratified meta-analyses—rater specific, age specific and instrument specific. For each stratified meta-analysis, we calculated genetic correlations ($r_{\rm g}$) with other stratified meta-analysis results using LDSC in genomic SEM. To ensure sufficient power for the genetic correlations,

 $r_{\rm g}$ was calculated across stratified assessments of ADHD if the z score for the corresponding GWAMA was 4 or higher.

Meta-analysis with case-control ADHD GWAS

In the next step, we meta-analyzed our ADHD $_{SYMP}$ GWAMA with a GWAS of ADHD diagnosis 13 . In ADHD $_{DIAG}$, cases are defined as clinically diagnosed with ADHD or prescribed medication specific to ADHD. ADHD $_{DIAG}$ included data from the Lundbeck Foundation Initiative for Integrative Psychiatric Research, the Psychiatric Genomics Consortium and deCode. Data were obtained for adults and children, resulting in a total of 38.691 cases and 186.843 controls.

For the meta-analysis, we first adjusted the test statistics and sample sizes for ADHD $_{\rm SYMP}$ and ADHD $_{\rm DIAG}$ as proposed in ref. 11. The lifetime population prevalence of ADHD was assumed to be $5\%^4$. SNP heritability for ADHD $_{\rm SYMP}$, and ADHD $_{\rm DIAG}$, and $r_{\rm g}$ and CTI between ADHD $_{\rm SYMP}$ and ADHD $_{\rm DIAG}$ were estimated by genomicSEM in R⁴¹. We meta-analyzed the results from ADHD $_{\rm SYMP}$ and ADHD $_{\rm DIAG}$ based on the approach outlined in ref. 40. We specified the effective sample sizes for ADHD $_{\rm DIAG}$ as suggested in ref. $19-n_{\rm eff}=\frac{4}{\left(\frac{1}{n_{\rm cases}}+\frac{1}{n_{\rm controls}}\right)}$. SNP heritability

was estimated using LDSC in genomic SEM $^{41}.$ There is no sample overlap between $\rm ADHD_{SYMP}$ and $\rm ADHD_{DIAG}.$

Follow-up analyses

Fine mapping and gene-based tests. To identify independent genome-wide significant loci and credible sets for each locus, we used FUMA²⁰, FINEMAP²², PAINTOR²³ and CAVIARBF²¹. One causal variant was assumed per locus. In FINEMAP, PAINTOR and CAVIARBF, variants located within 1 Mb of index variants were included in the analyses. All SNPs within 95% of the total posterior probability of the variants were included in the credible sets if they were tagged in at least two of the three methods. In FUMA, linkage disequilibrium blocks of independent significant SNPs within 250 kb were merged into a single genomic locus. These loci were mapped to protein-coding genes if they were located within a maximum distance of 10 kb of an independent significant SNP, or if a variant was annotated to the gene based on expression quantitative trait locus data or chromatin interaction data from the human brain (see Supplementary Methods for the included datasets). These are the same settings as applied in ref. 13.

Next, gene-based tests were run in MAGMA²⁴. MAGMA gene-based tests combine *P* values from multiple SNPs inside a gene to obtain a test statistic for each gene ($z_{\rm gene}$), while accounting for incomplete linkage disequilibrium between SNPs. To this end, a list of 18,296 genes and their start-positions and end-positions, and preformatted genotypes, based on 1000G phase 3, were obtained from the MAGMA website (Supplementary Methods). We applied a Bonferroni correction for multiple testing at α = 0.05/18,296 = 2.733 × 10⁻⁶.

It remains a challenge to identify which genes are causally involved in ADHD. FLAMES was recently developed with the goal of predicting the most likely effector genes from GWAS results²⁵. FLAMES is a new framework that combines SNP-to-gene evidence and convergence-based evidence, outputting a single score per gene from fine-mapped GWAS loci. We performed statistical fine mapping using FINEMAP version 1.4.1 (ref. 22), and a linkage disequilibrium reference panel of 100,000 unrelated UK Biobank participants of European descent. Given that the GWAMA contains cohorts that do not belong to the UK Biobank, we restricted the maximum number of causal variants in a locus modeled by FINEMAP to 1, to avoid overfitting. As a result, each locus also leads to a maximum of one (most) likely effector gene per locus. We ran FLAMES (version 1.0.0) by inputting pathway naïve PoPS scores⁴² for our GWAMA, the FUMA-defined loci and corresponding fine-mapped credible sets, resulting in a single FLAMES score per gene. Genes with FLAMES scores above 0.05 were interpreted as potential effector genes, as suggested by the FLAMES authors. For more information on FLAMES and the included functional

annotations, see ref. 25. Functional annotation and enrichment analysis were done for a set of genes with FLAMES scores above 0.05.

Enrichment and pathway analyses. We performed MAGMA gene-set analyses in the full ADHD_{OVERALL} results. Gene property analysis was performed to test relationships between tissue-specific gene expression profiles (see Supplementary Methods for an overview) and ADHD–gene associations. Next, genes mapped from credible sets by FUMA, and the set of potential effector genes identified with FLAMES were used in gene-set enrichment analyses. We ran hypergeometric tests using FUMA genes2func to assess if genes of interest are overrepresented in any of the predefined gene sets (see Supplementary Methods for all included gene sets). We used SynGO⁴³ v1.2 ('20231201') to test for enrichment in genes encoding for proteins involved in synaptic cellular components and biological pathways. The brain expressed background set was used, containing 18,035 unique genes.

Genetic correlations. We computed genetic correlations between ADH-D_{OVERALL} and 49 preselected traits, including cognition and externalizing behaviors, psychopathologies, anthropometric measures, metabolic, hormone and health outcomes (Supplementary Table 10). Phenotypes were selected based on established hypotheses or were at least nominally significantly (P< 0.05) genetically correlated with ADHD_{DIAG2019} (ref. 11). Following ref. 43, we restricted genetic correlations to external phenotypes for which the z scores of the LDSC-based h_{SNP}^2 are ≥ 4 .

PGS analysis. We assessed the performance of PGSs based on ADHD_{DSYMP}, ADHD_{DIAG} and ADHD_{OVERALL} by modeling their effect on an aggregated ADHD measure in three large cohorts (ALSPAC, MoBa and NTR). PGSs were constructed using PRScs (--n_burnin 10.000, --n_iter 25000), with summary statistics that excluded the target PGS cohort. We created an aggregated ADHD measure by combining the *z* scores of individual measures into a single standardized ADHD measure. We then performed regression analyses in R with ADHD as dependent variable, PGS as independent variable, and included sex, genotyping platform and ten genomic PCs as covariates. Because NTR includes data on family members, we controlled for dependency between observations by multilevel modeling in lme4 with a random intercept for families. Results from the three cohorts were meta-analyzed with the function metaplus in R. Explained variance was calculated separately in each cohort by comparing the explained variance of models with or without the PGSs.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

Data availability

Summary statistics for ADHD $_{SYMP}$ and ADHD $_{OVERALL}$ are available for download through GWAS Catalog (ebi.ac.uk/gwas/studies/GCST90568440 and ebi.ac.uk/gwas/studies/GCST90568441). ADH-D $_{DIAG}$ summary statistics are available for download at the Psychiatric Genomics Consortium (PGC) website (https://www.med.unc.edu/pgc/download-results/). Raw data are available upon request through the individual participating cohorts. Individual cohort GWAS summary statistics are available upon request through the corresponding author. Datasets used for gene mapping and hypergeometric gene-set tests in FUMA are listed in Supplementary Methods.

Code availability

The complete analysis plan is available for download at https://www.action-euproject.eu/sites/default/files/Action%20AGG%20AP%20SOP.pdf. The N-weighted GWAMA code is available via GitHub at https://github.com/baselmans/multivariate_GWAMA and via Zenodo at https://doi.org/10.5281/zenodo.15862079 (ref. 44. For a list of software and versions used, see Supplementary Methods.

References

- 31. Boomsma, D. I. Aggression in children: unravelling the interplay of genes and environment through (epi)genetics and metabolomics. J. Pediatr. Neonatal Individ. Med. 4, e040251 (2015).
- 32. Middeldorp, C. M., Felix, J. F., Mahajan, A. & McCarthy, M. I. The Early Growth Genetics (EGG) and Early Genetics and Lifecourse Epidemiology (EAGLE) consortia: design, results and future prospects. *Eur. J. Epidemiol.* **34**, 279–300 (2019).
- 33. Achenbach, T. M., Ivanova, M. Y. & Rescorla, L. A. Empirically based assessment and taxonomy of psychopathology for ages 1½–90+ years: developmental, multi-informant, and multicultural findings. Compr. Psychiatry **79**, 4–18 (2017).
- Goodman, R. Psychometric properties of the strengths and difficulties questionnaire. J. Am. Acad. Child Adolesc. Psychiatry 40, 1337–1345 (2001).
- Tucker, G. et al. Two-variance-component model improves genetic prediction in family datasets. Am. J. Hum. Genet. 97, 677–690 (2015).
- Minică, C. C., Dolan, C. V., Kampert, M. M. D., Boomsma, D. I. & Vink, J. M. Sandwich corrected standard errors in family-based genome-wide association studies. *Eur. J. Hum. Genet.* 23, 388–394 (2015).
- Liu, Q. et al. Systematic assessment of imputation performance using the 1000 Genomes reference panels. *Brief. Bioinform.* 16, 549–562 (2015).
- Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. *Nat. Genet.* 47, 291–295 (2015).
- 39. Baselmans, B. M. L. et al. Multivariate genome-wide analyses of the well-being spectrum. *Nat. Genet.* **51**, 445–451 (2019).
- Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. *Nat. Hum. Behav.* 3, 513–525 (2019).
- 41. Weeks, E. M. et al. Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases. *Nat. Genet.* **55**, 1267–1276 (2023).
- Koopmans, F. et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103, 217–234 (2019).
- 43. Bulik-Sullivan, B. K. et al. An atlas of genetic correlations across human diseases and traits. *Nat. Genet.* **47**, 1236–1241 (2015).
- van der Laan, C. N_weighted_GWAMA. Zenodo https://doi.org/ 10.5281/zenodo.15862079 (2025).

Acknowledgements

We would like to thank all participants, their parents and teachers for making this study possible. This project was supported by the ACTION project. ACTION received funding from the European Union Seventh Framework Program (FP7/2007-2013) under grant agreement 602768. Cohort-specific acknowledgments and funding information are included in the Supplementary Note.

Author contributions

C.M.v.d.L. conducted the central analyses and wrote the manuscript. M. Schipper performed the FLAMES analyses. H.F.I., B.St.P., T.Z.,

R. Pool, E.M.L.K., I.B., M.S.A., J.C.-D., S.A., I.M.N., K.B., T.P., H.Z., S.G., F.A., C.A.W., G.S., V.K., D.E.A., R. Border, R.E.P., J.A.P., E.T., N.V.-T., T.K., E.V., A.K.H., S. Llop, M.-J.L.-E., C.J., D.M.D., T.S.A., A.A., K.R., Q.C., Y.L., J.M., R. Bosch, N.L., A.N., J.E., K.L.G., J.J.M., X.T., S.M., J.G.S., A.A.S., L.M.E., K.S., L.S., R.V., C.J., Q.L., J.P., J. Horwood and W.E.C. performed cohort-specific analyses. J.-J.H., R.C., S.J., M.S.A., J.C.-D., S.A., R. Bosch, N.L., S.A.B., C.C., J. Haavik, A.K.H., A.S., S. Llop, M.-J.L.-E., L.A., M.M., N.V.-T., E.A.E., K.K., M. Stallings and M.R. coordinated genotyping. B.St.P., S.A., J.S., H.L., S. Lundström, R.J.R., A.G.U., F.A.H., H.S., Ø.H., A.R., A.K.H., S. Llop, M.-J.L.-E., L.A., M.K., M.M., J.R.H., G.P.S.K., P.R.N., A. Mamun, J.M.N., S.B., C.H., C.A.R., M. Stallings, S.W., T.L.W., L.E., J.L.S., A. Miller, A.H., K.B., J.S., M. Standl, J. Heinrich, J.B., J. Horwood, R. Pool, H.H.M., W.E.C., C.M.M, N.W., M.-R.J., W.I., A.C., T.E.M., A.J.O.W., C.E.P., K.L.K., D.M.D., M.S.A., J.C.-D., S.A., R. Bosch, N.L., S.A.B., J.A.R.-Q., R.C., A.M.W., T.K., E.V., T.R.-K., N.G.M., S.E.M., T.V., J.K., H.T., C.A.H., A.J.O., M.C., P.L., R. Pool, M.B., M.G.N. and D.I.B. collected samples and conducted phenotyping. B.St.P., J.S., H.L., S. Lundström, S.A.B., R.J.R., A.G.U., J.R.H., G.P.S.K., P.R.N., J.M.N., S.B., C.H., J. Hewitt, M. Stallings, S.W., L.E., J.L.S., H.H.M., W.E.C., C.M.M., N.W., M.-R.J., W.I., A.C., T.E.M., A.J.O.W., C.E.P., KL.K., D.M.D., J.A.R.-Q., H.S., A.S., S. Llop, M.-J.L.-E., L.A., M.K., G.M.W., M.M., G.M.W., T.R.-K., N.G.M., S.E.M., T.V., J.K., H.T., G.D.S., C.A.T., A.J.O., M.C., M.R., P.L., R. Plomin, M.B., M.G.N. and D.I.B. led the study design and principal investigator oversight. All above mentioned authors and E.M.D. contributed to critical revisions of the manuscript and approved the final version for submission.

Competing interests

J.A.R.-Q. was on the speakers' bureau and/or acted as a consultant for Biogen, Idorsia, Casen-Recordati, Janssen-Cilag, Novartis, Takeda, Bial, Sincrolab, Neuraxpharm, BMS, Medice, Rubió, Uriach, Technofarma and Raffo in the last 3 years. He also received travel awards (air tickets and hotel) for taking part in psychiatric meetings from Idorsia, Janssen-Cilag, Rubió, Takeda, Bial and Medice. The Department of Psychiatry, chaired by him, received unrestricted educational and research support from the following companies in the last 3 years: Exeltis, Idorsia, Janssen-Cilag, Neuraxpharm, Oryzon, Roche, Probitas and Rubió. M.C. has received fees to give talks for TAKEDA and Laboratorios RUBIO. The other authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41588-025-02295-y.

Correspondence and requests for materials should be addressed to Camiel M. van der Laan.

Peer review information *Nature Genetics* thanks Joshua Gray, Andrew McQuillin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at www.nature.com/reprints.

nature portfolio

Corresponding author(s):	Camiel M. van der Laan
Last updated by author(s):	Apr 29, 2025

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

~ .				
St	at	is:	tι	۲S

For	all st	atistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a	Cor	nfirmed
		The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
	\boxtimes	A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
	\boxtimes	The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section.
	\boxtimes	A description of all covariates tested
	\boxtimes	A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
	\boxtimes	A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
	\boxtimes	For null hypothesis testing, the test statistic (e.g. <i>F</i> , <i>t</i> , <i>r</i>) with confidence intervals, effect sizes, degrees of freedom and <i>P</i> value noted <i>Give P values as exact values whenever suitable.</i>
		For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
	\boxtimes	For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
	\boxtimes	Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
		Our web collection on statistics for higherists contains articles on many of the points above

Software and code

Policy information about availability of computer code

Data collection

Data analysis

N-weighted GWAMA code: https://github.com/baselmans/multivariate_GWAMA R version 4.4.1 (2024-06-14)

GenomicSEM version 0.0.5 FINEMAP version 1.4.1 CAVIARBF C++ version PAINTOR version 3 FLAMES version 1.0.0 FUMA version 1.6.2 MAGMA version 1.08 EasyQC version 23.8

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data availability

Ethics oversight

Summary statistics for ADHDSYMP and ADHDOVERALL are available for download through GWAS catalog (https://www.ebi.ac.uk/gwas/). ADHDDIAG summary statistics are available for download at the PGC website (https://www.med.unc.edu/pgc/download-results/). Raw data are available upon request through the individual participating cohorts. Individual cohort GWAS summary statistics are available upon request through the corresponding author. Datasets used for gene mapping and hypergeometric gene-set tests in FUMA are listed in the Supplementary Notes.

Research involving human participants, their data, or biological material

Policy information about studies with <u>human participants or human data</u>. See also policy information about <u>sex, gender (identity/presentation)</u>, <u>and sexual orientation</u> and <u>race</u>, ethnicity and racism.

Reporting on sex and gender

Reporting on race, ethnicity, or other socially relevant groupings

Respondents are children with measures of ADHD symptoms. For a complete overview, see Supplemental Table 8.

Recruitment

Recruitment was dependent on the cohort that provided the data. Information on the individual cohorts and their recruitment tactics is given in the Supplemental Text.

Study approval was obtained from the Central Ethics Committee on Research Involving Human Subjects of the VU University Medical Center, Amsterdam (NTR 25th of May 2007 and ACTION 2013/41 and 2014.252), an Institutional Review Board certified by the U.S. Office of Human Research Protections (IRB number IRB00002991 under Federal-wide Assurance-FWA00017598; IRB/institute codes).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below	v that is the best fit for your research.	If you are not sure, read the appropriate sections before making your selection.
Life sciences	Behavioural & social sciences	Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description	Genome wide association analysis of quantitative measures of ADHD.
Research sample	Children with ADHD measures from European descent and ADHD diagnosed cases and controls. See also Table 2, and Demontis et al. 2023.
Sampling strategy	Sampling strategies differed between cohorts. For a complete overview, please consult the Supplemental Notes
Data collection	Data collection differed between cohorts. For a complete overview, please consult the Supplemental Text.
Timing	Data collection differed between cohorts. For a complete overview, please consult the Supplemental Text.
Data exclusions	For a complete overview of the quality control procedures, please consult the Supplemental Text.
Non-participation	Dependent on individual cohort, please consult the Supplemental Text.
Randomization	Participants were not allocated into groups.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems		Me	Methods	
n/a	Involved in the study	n/a	Involved in the study	
\boxtimes	Antibodies	\boxtimes	ChIP-seq	
\boxtimes	Eukaryotic cell lines	\boxtimes	Flow cytometry	
\boxtimes	Palaeontology and archaeology	\boxtimes	MRI-based neuroimaging	
\boxtimes	Animals and other organisms		•	
\boxtimes	Clinical data			
\boxtimes	Dual use research of concern			
\boxtimes	Plants			
	•			

Plants

Seed stocks

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

Authentication

was applied.

Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, off-target gene editing) were examined.