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Genome-wide association meta-analysis of 
childhood ADHD symptoms and diagnosis 
identifies new loci and potential  
effector genes

 

We performed a genome-wide association meta-analysis (GWAMA) 
of 290,134 attention-deficit/hyperactivity disorder (ADHD) symptom 
measures of 70,953 unique individuals from multiple raters, ages and 
instruments (ADHDSYMP). Next, we meta-analyzed the results with a study 
of ADHD diagnosis (ADHDOVERALL). ADHDSYMP returned no genome-wide 
significant variants. We show that the combined ADHDOVERALL GWAMA 
identified 39 independent loci, of which 17 were new. Using a recently 
developed gene-mapping method, Fine-mapped Locus Assessment Model 
of Effector genes, we identified 22 potential ADHD effector genes implicating 
several new biological processes and pathways. Moderate negative genetic 
correlations (rg < −0.40) were observed with multiple cognitive traits. In 
three cohorts, polygenic scores (PGSs) based on ADHDOVERALL outperformed 
PGSs based on ADHD symptoms and diagnosis alone. Our findings support 
the notion that clinical ADHD is at the extreme end of a continuous liability 
that is indexed by ADHD symptoms. We show that including ADHD symptom 
counts helps to identify new genes implicated in ADHD.

Attention-deficit/hyperactivity disorder (ADHD) is, for many individu-
als, a persistent neurodevelopmental disorder1,2. ADHD is character-
ized by the following three core symptoms: hyperactivity, impulsivity 
and inattention3. It affects around 5% of children and adolescents and 
2.5% of adults worldwide4. ADHD may be associated with serious con-
sequences for affected individuals, their families and society at large, 
with symptoms persisting across multiple settings, that is, at home, 
at school and elsewhere5,6. This disorder has a predominantly genetic 
etiology, involving both common and rare genetic variants7. The mean 
estimated heritability across 37 twin studies of ADHD was 74%8–10.

In 2019, a genome-wide association meta-analysis (GWAMA) of 
clinical ADHD, hereafter referred to as ADHDDIAG2019, which included 
data from 20,183 cases and 35,191 controls, identified the first 12 
genome-wide significant loci associated with ADHD11. The study 
reported that 22% of the variance in ADHD could be explained by all 
measured single nucleotide polymorphisms (SNPs). They also per-
formed meta-analyses with data from deCode, 23andMe and the Early 

Genetics and Lifecourse Epidemiology (EAGLE) consortium12. Four 
independent loci reached the genome-wide significance threshold 
in all three meta-analyses. Interestingly, most independent signifi-
cant loci, 15, were found in the meta-analysis with EAGLE, based on a 
quantitative assessment of attention problems, implying that this can 
boost the power to identify associated variants. In 2023, ADHDDIAG2019 
was updated, almost doubling the number of cases13. In this updated 
GWAMA, ADHDDIAG, the definition of cases was broader, for example, 
by including individuals who used ADHD prescription medication. 
The study reported 27 independent significant loci and estimated 
that 14% of the variance in ADHD could be attributed to the included 
SNPs. The broader definition of ADHD diagnosis not only resulted in a 
larger sample and therefore more power to detect implicated genetic 
variants, but also increased the heterogeneity of the phenotype, which 
may explain the decrease in estimated SNP heritability14.

There is an increasing recognition that ADHD symptom counts in 
nonclinical samples can tap into the same genetic construct as clinically 

Received: 20 March 2024

Accepted: 12 July 2025

Published online: xx xx xxxx

 Check for updates

A list of authors and their affiliations appears at the end of the paper

 e-mail: c.m.vanderlaan@uu.nl

http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-025-02295-y
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-025-02295-y&domain=pdf
mailto:c.m.vanderlaan@uu.nl


Nature Genetics

Article https://doi.org/10.1038/s41588-025-02295-y

taking into consideration the dependency between multiple assess-
ments within individuals19. Analyzing measures from multiple raters 
and ages may further increase the power of the analyses because of an 
increase in the validity of the ADHD symptom measures. Next, we 
estimated the genetic correlations (rg) between ADHDSYMP and the 
meta-analysis of case-control samples13, and meta-analyzed ADHDSYMP 
with ADHDDIAG (ADHDOVERALL). Finally, we performed fine mapping and 
gene-based tests based on ADHDSYMP and ADHDOVERALL, performed 
follow-up enrichment and pathway analyses, estimated genetic cor-
relations between the GWAMA and a set of predefined outcomes from 
cognitive and externalizing behavior domains and assessed 
out-of-sample polygenic score (PGS) prediction in three cohorts.

Results
ADHDSYMP GWAMA
We first meta-analyzed the effect of each SNP across all available uni-
variate GWASs of quantitative ADHD measures. Based on an effective 
sample size of 120,092, the estimated h2

SNP
 of ADHDSYMP was 0.04 

(s.e. = 0.01; z = 8.12). The mean χ2 statistic was 1.09 with a linkage dis-
equilibrium score regression (LDSC) intercept of 1.01 (s.e. = 0.01), 
indicating that there was no or very limited inflation in test statistics 

diagnosed ADHD, supporting the notion that clinical ADHD is at the 
extreme end of a continuous measure of ADHD symptoms15,16. This 
hypothesis was initially suggested based on multivariate twin studies17. 
In support, the genetic correlation (rg) between quantitative ADHD 
symptom counts12 and ADHDDIAG2019 (ref. 11) was estimated to be 0.97 
(s.e. = 0.21, P = 2.66 × 10−6), suggesting that combining these measures 
is a viable strategy to increase statistical power in ADHD GWASs. This 
was further supported by the increased number of genome-wide sig-
nificant loci in the meta-analysis of ADHDDIAG2019 and EAGLE, as com-
pared to ADHDDIAG2019 alone, and to meta-analyses of ADHDDIAG2019, 
deCode and 23andMe.

Here we combined information from 28 population-based cohorts 
in a GWAMA of continuous ADHD symptom scores, comprising a total 
of 70,953 participants (Table 1). The measures included repeated assess-
ments (longitudinal data) by multiple raters (maternal, paternal, teach-
ers and self-assessments) and instruments across ages (range = 2–18 
years), for a total of 290,134 measures. We also included retrospective 
self-report data. The details in ref. 18 showed that using repeated meas-
ures greatly improved GWAS power over using a single aggregated 
outcome. We meta-analyzed all available data into a cross-rater/
cross-age/cross-instrument GWAMA of ADHD symptoms (ADHDSYMP), 

Table 1 | Cohort descriptives

Cohort nunique nGWASs nobs Instrument Raters Minimum age Maximum age Mean age

ABCD 1,154 5 4,471 18 M,S,T 5 13 8.46

ALSPAC 7,308 7 33,973 18 M,T 7 18 10.99

BREATHE 1,638 1 1,638 13 T 7 11 9.23

CATSS 7,094 9 33,052 1,7,8,17,18 F,M,S 8 19 13.66

CHDS 626 4 2,429 12,16,17 M,S 10 16 13.72

COGA 2,072 1 2,072 13 S R R R

COPSAC 459 1 459 18 M 6 9 8.5

Dunedin 882 2 1,069 16 M 13 15 14.06

E-risk 1,859 1 1,859 14 S 18 18 18

FinnTwin 1,138 5 4,998 15 F,S,T 10 18 13.80

Gen-R 2,654 8 13,646 2,3,4,17 F,M,S,T 3 12 6.95

GINIplus/LISA 1,439 2 2,582 18 M,S 9 17 12.43

GSMS 730 3 1,605 9 M 9 17 13.12

IBG 1,052 4 2,519 3 M 7 18 12.83

INMA 541 1 541 13 T 3 7 5.06

INSchool 3,557 21 15,813 3,4,6,18 F,M,S,T 5 17 9.94

MCTFR 2,040 2 3,662 13 T 11 14 13.26

MoBa 8,200 4 22,703 3,20 M 1 8 3.93

MSUTR 1,280 3 3,517 3,4,6 M,S,T 6 9 7.83

MUSP 1,242 3 3,624 3,6 M,T 4 15 11.21

NFBC1986 3,433 1 3,433 6,19 S 16 16 16.01

NTR 6,228 16 52,615 3,4,5,6,11 F,M,S,T 2 17 8.49

QIMR 3,978 3 5,528 20 M,S 9 18 14.01

Raine study 1,484 4 5,407 3 M,S 5 15 9.63

TCHAD 647 5 4,268 3,6 M,S 8 17 13.48

TEDS 6,030 26 49,985 16 M,S,T 1 18 8.89

TRAILS 1,354 9 10,657 3,4,6 M,S,T 10 18 13.44

VTSABD 834 3 1,469 9 M 8 18 14.08

Total 70,953 154 290,138

Instrument codes—1, ASEBA-ABCL; 2, ASEBA-BPM; 3, ASEBA-CBCL; 4, ASEBA-TRF; 5, ASEBA-YASR; 6, ASEBA-YSR; 7, ASRS; 8, A-TAC; 9, CAPA; 10. Conner’s; 11, Devereux; 12, DISC; 13, DSM-IV;  
14, DSM-V; 15, MPNI; 16, RBPC; 17, Rutter/Conners; 18, SDQ; 19, SWAN; 20, RS-DBD. For the full descriptives, see Supplementary Tables 2 and 8. M, mother report; F, father report; S, self-report;  
T, teacher report; R, retrospective.
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due to confounding biases, such as population stratification. Rather, 
the GWAMA most likely captured the polygenic nature of childhood 
ADHD symptoms. The GWAMA of ADHD symptoms did not identify 
any genome-wide significant SNPs (Fig. 1 and Supplementary Table 11).

Stratified meta-analyses of ADHD symptoms
After meta-analyzing all univariate ADHD symptoms GWASs, we per-
formed the following stratified meta-analyses: rater specific, age spe-
cific and instrument specific. For most stratified results, h2 z was <4. The 
genetic correlation between the two largest stratified GWAMAs, namely 
teacher-rated ADHD symptoms and mother-rated ADHD symptoms, 
was 0.72 (s.e. = 0.13), indicating that there are some rater differences 
in the effects of genetic variants, which likely depend on the different 
contexts in which teachers and parents observe the behavior9. Forest 
plots for the lead SNPs in all significant loci with the effect sizes from all 
stratified GWAMAs did not reveal any clear patterns, because the smaller 
sample sizes led to larger standard errors (Supplementary Data 1).

Meta-analysis with ADHD diagnosis GWAS
SNP heritability estimated with genomicSEM was 0.13 (s.e. = 0.01) for 
ADHDDIAG. The estimated genetic correlation between ADHDSYMP and 
ADHDDIAG was 1.00 (s.e. = 0.06). The cross-trait intercept (CTI) was not 
substantially different from zero and was subsequently constrained to 
zero in the following meta-analysis.

Because the point estimate of the genetic correlation between 
ADHDSYMP and ADHDDIAG was not substantially different from 1, we 
constrained the genetic correlation at unity when pre-adjusting the 
weights and z scores for the meta-analysis of ADHDSYMP and ADHDDIAG. 
A total of 6,571,852 SNPs were included in the meta-analysis. The SNP 
heritability of ADHDOVERALL was 0.11 (s.e. = 0.01), with a mean χ2 statistic 
of 1.52. The LDSC-intercept and ratio were 1.02 (s.e. = 0.01) and 0.03 
(s.e. = 0.02), respectively, indicating that approximately 3% of the signal 
might be due to confounding factors. Figure 2 shows a Manhattan plot 
of ADHDOVERALL. A total of 2,039 SNPs reached genome-wide significance 
(P < 5 × 10−8), of which 644 were also reported in ADHDDIAG and 1,395 
were new. The 2,039 SNPs corresponded to 43 independent lead SNPs 
in 39 independent significant loci, identified with FUMA (https:// 
fuma.ctglab.nl)20, CAVIARBF21, FINEMAP22 and PAINTOR23 (for locus 
plots, see Supplementary Data 1 and 2). Of these 39 loci, 22 were also 
reported in ADHDDIAG and 17 were new. All 17 new loci were suggestive 
(P < 1 × 10−5) in ADHDDIAG. This suggests that including ADHDSYMP led to 
an increase in power that pushed these 17 loci over the genome-wide 
significance threshold. There was some fluctuation in genetic effects 
among ADHDSYMP cohorts (Supplementary Data 2). Five independent 

significant loci in ADHDDIAG did not replicate in ADHDOVERALL. Of these 
five loci, all lead SNPs were still suggestive in ADHDOVERALL, two loci (on 
chromosomes 3 and 7) had opposite directions of effects, and three 
loci (on chromosomes 3, 4 and 8) had effects in the same direction 
(Supplementary Tables 12 and 13).

Follow-up analyses
Fine mapping and gene-based tests. Follow-up analyses for ADHDSYMP 
did not reveal any implicated pathways or genes. For ADHDOVERALL, gene 
mapping in FUMA mapped the 43 lead SNPs in 39 independent genomic 
risk loci to 204 associated genes (Supplementary Table 15), of which 
45 were also reported in ref. 13. Second, gene-based tests were run in 
MAGMA24, identifying 64 associated genes (Supplementary Table 16), of 
which 17 were previously reported in ref. 13. Third, we ran Fine-mapped 
Locus Assessment Model of Effector genes (FLAMES)25, with the aim 
to get a better understanding of genes that are causally involved in 
ADHD. A total of 22 genes had FLAMES scores larger than 0.05 and were 
interpreted as potential effector genes, of which 14 were also tagged 
by the MAGMA gene-based test and 10 were previously reported in 
ref. 13. Four genes were not reported in ref. 13 but have previously 
been linked to ADHD, as listed in the GWAS Catalog (https://www.ebi. 
ac.uk/gwas/). Eight potential effector genes were not reported in 
ref. 13 or in any ADHD-specific studies listed in the GWAS Catalog—
EMCN, STK32C, PCDH17, TCF12, PEAK1, IGF1R, CTNNA2 and ABCA12. See 
Supplementary Table 17 for an overview of all potential effector genes, 
including Ensembl.org links, and refer to Supplementary Methods for 
the National Center for Biotechnology Information summaries for all 
of these genes.

Enrichment and tissue-specific expression. Gene-set analysis in 
MAGMA revealed no substantial enrichment in any MSigDB v2023 
gene sets after correction for multiple testing. MAGMA expression 
analysis showed substantial enrichment of the GWAMA signal in gene 
sets differentially expressed in late infancy. Additionally, there was 
substantial enrichment in several brain tissue types, as well as in the 
pituitary gland (Supplementary Figs. 2 and 3).

Next, FUMA GENE2FUNC gene-set enrichment analyses of the 204 
potential ADHD risk genes mapped by FUMA exhibited substantial 
enrichment in genes identified in GWAS of ADHD, cognition-related 
phenotypes and risk-taking behaviors. These 204 genes were not 
substantially enriched in any tissue types or in any of the Brainspan 
developmental stages of brain samples (http://www.brainspan.org), 
but were enriched in 29 gene sets that code for transcription factor 
targets. No synapse cellular component terms or biological processes 
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Fig. 1 | Manhattan plot of GWAMA of ADHD symptoms. The red line represents the genome-wide significance threshold (P < 5 × 10−8), adjusted for multiple 
comparisons of common variants across the entire genome. The blue line represents a more lenient threshold (P < 1 × 10−5).
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were enriched at 1% false discovery rate (testing terms with at least three 
matching input genes in SynGO; https://www.syngoportal.org). For a 
complete overview of all enrichment results and the included gene sets, 
see Supplementary Figs. 4–6 and Supplementary Methods.

We repeated the same analyses for the 22 potential effector genes 
identified by FLAMES. Again, findings were highly enriched for genes 
identified in GWAS of cognition-related phenotypes and risk-taking 
behaviors. The 22 genes were substantially overrepresented in gene sets 
that are differentially expressed in the frontal cortex, but not in the ‘gen-
eral tissue’ type brain or in any of the Brainspan developmental stages. 
They were also enriched in 52 gene sets that code for transcription 
factor targets, 13 microRNA targets, 4 Gene Ontology (GO) biological 
processes, 1 canonical pathway and 8 cell-type signatures. No synapse 
cellular component terms or biological processes were enriched at 1% 
false discovery rate (testing terms with at least three matching input 
genes in SynGO). Nine genes were mapped to SynGO annotations, eight 
to cellular components and nine to biological processes. Gene enrich-
ment was observed in integral components of the postsynaptic density 
membrane (q = 1.46 × 10−3), postsynaptic density (q = 1.57 × 10−3), post-
synapse (q = 5.67 × 10−3) and synapse (q = 7.22 × 10−3), as well as in post-
synaptic modulation of chemical synaptic transmission (q = 3.28 × 10−5), 
process in the synapse (q = 3.97 × 10−4) and synapse organization 
(q = 1.62 × 10−3) (where q is the false discovery rate-corrected P value). 
For a complete overview of all enrichment results and the included 
gene sets, see Supplementary Figs. 7–13, Supplementary Tables 18–19 
and Supplementary Methods.

Genetic correlations. We estimated genetic correlations between 
ADHDOVERALL and 49 preselected phenotypes. Results are summarized in 
Fig. 3 and Supplementary Table 19. Strong positive genetic correlations 
were observed between ADHDOVERALL and childhood aggressive behav-
ior (rg = 1.13, s.e. = 0.05) and antisocial behavior (rg = 0.97, s.e. = 0.06). 
The correlation of 1.13 with childhood aggressive behavior reflects a 
high genetic correlation that is estimated to be greater than 1 due to 
sampling variation, as correlations estimated by LDSC in genomicSEM 
are not bounded between −1 and 1 (childhood aggression h2 z = 9.03). 
Measures of smoking habits (rg = 0.46–0.60, s.e. = 0.03) and number of 
children (rg = 0.38, s.e. = 0.04) also showed moderate correlations, as 
did ratings of overall health (rg = −0.59, s.e. = 0.03), educational attain-
ment (rg = −0.55, s.e. = 0.02) and childhood IQ (rg = −0.43, s.e. = 0.06). In 
general, ADHDOVERALL showed weak-to-moderate genetic correlations 
with psychopathology, including major depressive disorder (rg = 0.57, 
s.e. = 0.03) and autism spectrum disorder (rg = 0.39, s.e. = 0.04). Weak 

negative genetic correlations were found between ADHDOVERALL and 
alcohol intake frequency (rg = −0.28, s.e. = 0.03). Correlations with 
drinks per week (rg = 0.14, s.e. = 0.03) and cannabis use (rg = 0.20, 
s.e. = 0.03) were small and positive. Ref. 26 investigated the contrast-
ing correlations for alcohol intake frequency and drinks per week. 
They found evidence to suggest that this discrepancy is the result of 
confounding socioeconomic status (SES) influences. ADHDOVERALL was 
weakly negatively genetically correlated with birth weight (rg = −0.10, 
s.e. = 0.02), which confirms earlier findings of a causal relation between 
birth weight and ADHD27. ADHDOVERALL was positively correlated with 
childhood obesity (rg = 0.21, s.e. = 0.05) and adult body mass index 
(rg = 0.30, s.e. = 0.02). The genetic correlations estimated in ADHDDIAG 
and ADHDOVERALL were very similar. The general trends were the same: 
positive correlations with substance use, number of children and multi-
ple psychopathologies. Negative correlations were found for cognitive 
traits, health outcomes and well being.

PGS analysis. We assessed the performance of PGSs based on ADH-
DSYMP, ADHDDIAG and ADHDOVERALL by modeling their effect on an aggre-
gated ADHD measure in three large cohorts (ALSPAC, MoBa and NTR). 
We meta-analyzed the results in these three cohorts, which indicated 
that ADHDOVERALL performed best (β = 0.13, s.e. = 0.04), followed by 
ADHDDIAG (β = 0.11, s.e. = 0.04) and ADHDSYMP (β = 0.08, s.e. = 0.03). 
Explained variance within each cohort was largest for the ADHDOVERALL 
PGS (0.3% in MoBa, 2.2% in ALSPAC and 3.1% in NTR), which was an 
increase compared to ADHDDIAG (0.2% in MoBa, 2% in ALSPAC and 2.5% 
in NTR). The PGS for ADHDSYMP explained 0.1% in MoBa, 1.1% in ALSPAC 
and 1.2% in NTR.

Discussion
We present a GWAMA of childhood ADHDSYMP. A total of 28 cohorts 
with measures of ADHD symptom counts took part, contributing data 
from multiple raters and instruments across a wide range of ages. We 
meta-analyzed all continuous measures and combined these results 
with results from two GWAMAs of ADHD diagnosis (ADHDDIAG)11,13.

We did not identify genome-wide significant hits for ADHD symp-
toms, but estimated a genetic correlation with ADHD diagnosis 
(rg = 1.00, s.e. = 0.06). This supports the notion that clinical ADHD is at 
the extreme end of a continuous genetic liability that is indexed by 
ADHD symptoms15,16, as previously suggested based on multivariate 
twin studies17. The estimated h2

SNP
 of ADHDSYMP was 0.04 (s.e. = 0.01), 

which may be considered low compared to the estimated h2
SNP

 in refs. 
11,13 (0.22 and 0.14, respectively). This may be due to the heterogeneous 
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Fig. 2 | Manhattan plot of GWAMA of ADHD symptoms and ADHD diagnosis. Orange dots reflect lead SNPs. The red line represents the genome-wide significance 
threshold (P < 5 × 10−8), adjusted for multiple comparisons of common variants across the entire genome. The blue line represents a more lenient threshold (P < 1 × 10−5).
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measurement error and bias in phenotyping by including symptom 
measures from different raters, and at different ages, which could 
subsequently suppress SNP heritability.

By meta-analyzing GWASs of ADHD symptoms and ADHD diagno-
sis, we found 2,039 genome-wide significant variants in 39 independent 
loci, of which 17 were new. The studies discussed in refs. 11,13 identified 
12 and 27 independent loci in 2019 and 2023, respectively. This shows 
that combining ADHD symptom counts with diagnosis can be effective 
in identifying implicated genetic variants for ADHD. This is of value 
because ADHD symptom measures have been widely collected. The 
estimated genomicSEM h2

SNP
 of ADHDOVERALL was 0.11 (s.e. = 0.01) com-

pared to 0.14 in ADHDDIAG. Thus, by including ADHDSYMP in the ADHDDIAG 
results, h2

SNP
 decreased slightly. We believe this is due to the heteroge-

neous measurement error and bias in the ADHDSYMP phenotyping14. The 
same can be observed when looking at the differences in h2

SNP
 between 

ADHDDIAG from 2019 (h2
SNP

= 0.22), which was strict in its definition of 
ADHD cases, and ADHDDIAG from 2023 (h2

SNP
= 0.14), which was slightly 

more lenient in its definition of ADHD cases.
MAGMA analyses identified 64 potential ADHD risk genes, which 

were substantially enriched in genes previously identified in GWASs of 
cognitive phenotypes and risk-taking behaviors. The total GWAS signal 
was substantially differentially expressed in several brain-specific tis-
sue types, general brain tissue types and the pituitary gland, as well as 
in late infancy Brainspan brain samples (www.brainspan.org). FUMA 
mapped significant loci to 204 genes. Again, genes were enriched 

in gene sets reported by previous GWASs of cognitive behavior, 
risk-seeking behavior, and brain development. FUMA enrichment 
analyses further revealed 29 transcription factor targets that may be 
of interest for ADHD.

To identify causal pathways from SNPs to ADHD, we ran FLAMES25, 
which identifies likely effector genes. FLAMES reported 22 potential 
effector genes, of which 14 overlapped with the MAGMA genes, 12 were 
previously reported in ref. 13 and 8 were neither previously linked to 
ADHD nor reported in the GWAS Catalog. These 22 genes were sub-
stantially overrepresented in gene sets differentially expressed in the 
frontal cortex, enriched in 4 GO biological processes related to neural 
and physical development, 52 transcription factor targets, 13 microRNA 
targets, 8 different cell-type signatures, 4 synapse cellular components 
and 3 synaptic biological processes. In ref. 13, the set of potential ADHD 
risk genes was substantially enriched among genes upregulated during 
early embryonic brain development, but this result was not replicated 
in the current study. A common theme is that implicated genes are 
enriched in processes that are involved in neural development and 
functioning. The results provide several new avenues to investigate to 
gain more insights into the etiology of ADHD. The results may also pro-
vide useful information for the 22 potential effector genes compared 
to the 204 genes identified by FUMA positional mapping, expression 
quantitative trait locus mapping and chromatin interaction mapping. It 
is likely that this difference results from the difference in strategies used 
by both methods. FUMA maps every gene for which some functional 
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Fig. 3 | Genetic correlations with external phenotypes. Dots indicate genetic correlation estimates and bars indicate 95% confidence intervals. Study-specific 
information for each genetic correlation can be found in Supplementary Table 10. Genetic correlation estimates and s.e. are listed in Supplementary Table 20.
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link is known to exist, whereas FLAMES weighs all these measurements 
and only prioritizes genes if they are clearly more likely causal genes 
than the other genes in the locus. Our findings indicate that FLAMES 
can help to identify functional pathways that may remain hidden with 
other approaches due to a reduction of noise from noncausal genes 
in the set of prioritized genes, which decreases the power to detect 
enrichment in functional gene sets.

Estimates of genetic correlations between ADHDOVERALL and other 
phenotypes showed substantial genetic correlations with all exam-
ined psychopathological traits except anorexia nervosa. Most strik-
ing were the genetic correlations of 1.13 with childhood aggressive 
behavior and 0.97 with antisocial behavior. Previous studies reported 
moderate-to-strong phenotypic correlations across sex-specific, 
rater-specific, age-specific and instrument-specific assessments 
between aggressive behavior and attention problems and hyper-
activity28. When interpreting these strong genetic correlations, it is 
important to distinguish between biological pleiotropy and statistical 
pleiotropy29. In biological pleiotropy, the same genetic variants physi-
cally underlie both traits. In statistical pleiotropy, the genetic variants 
in one trait predict the effect of different genetic variants in another 
trait. It is likely that both types of pleiotropy contribute to the genetic 
correlation of around 1. We observed a negative genetic correlation 
between ADHD and alcohol intake frequency and a positive correlation 
between ADHD and number of drinks per week. The details in ref. 26 
suggest that SES effects confound these different genetic correlations. 
We found a moderate genetic correlation with smoking behaviors, but a 
small correlation with cannabis use. We observed negative correlations 
with several cognitive traits, such as (childhood) IQ, verbal-numerical 
reasoning and educational attainment. Similar to a GWAS of childhood 
aggression19, genetic correlations with multiple hormone levels were 
around zero. Finally, we found a small negative correlation with birth 
weight, but a weak positive correlation with childhood obesity and 
adult body mass index. These estimated genetic correlations were 
very similar to those estimated with ADHDDIAG. The genetic correlations 
suggest wide pleiotropic effects of variants involved in ADHD. This is 
illustrative of the polygenetic nature of most behavioral, cognitive and 
mental health traits. It also indicates that genetic factors have a role in 
the comorbidity of psychopathological disorders.

To assess the performance of PGSs based on ADHDSYMP, ADHDDIAG 
and ADHDOVERALL, we modeled their effect on an aggregated ADHD 
measure in three cohorts (ALSPAC, MoBa and NTR). These results 
indicated that adding ADHD symptom counts increased the power 
of the PGS in the three cohorts. The differences were small, especially 
between ADHDDIAG and ADHDOVERALL. In NTR data, the explained variance 
increased from 2.5% for the ADHDDIAG PGS to 3.1% for the ADHDOVERALL 
PGS. Therefore, we recommend using the ADHDOVERALL data to construct 
PGS in future work, especially when predicting ADHD symptoms.

Combining data collected using different instruments and by 
different raters helps to increase the sample size, and with that the 
statistical power of our analyses. This is illustrated by the increase in 
detected genetic variants associated with ADHD in ADHDOVERALL. The 
main benefit of including multiple measures, ratings and instruments 
is that they are not dependent on a single context. However, we also 
observed that the genetic effects from ADHDSYMP were smaller com-
pared to ADHDDIAG, which may have suppressed SNP heritability. Our 
study raises the question of how to optimally make use of repeated 
measures and multiple raters and instruments. In general, GWAMAs 
could highly benefit from the increased power that could be acquired 
by including a wider range of measures.

Assessments of ADHD in individuals from non-European ancestry 
were rare in each of the included cohorts. Because of the low number of 
assessments, we excluded non-European individuals from our analy-
ses. We know that results from European ancestry GWASs often also 
substantially predict differences in non-European ancestry groups, 
but effect sizes are diluted toward zero30. Regrettably, this means 

that knowledge generated by these types of studies risks benefiting 
individuals of European ancestry more than those from diverse back-
grounds. To better understand the etiology of ADHD across individu-
als and backgrounds, it is important to continue ongoing efforts to 
increase the inclusivity of GWAS samples.

In conclusion, the current study adds new insight into the genetic 
etiology of ADHD. By meta-analyzing GWAS results from symptom 
counts of ADHD in children with a diagnosis of ADHD, we identified new 
genome-wide significant loci and genes. The number of genome-wide 
significant genetic variants that are implicated in ADHD provides 
further insight into the polygenic etiology of ADHD. The 22 potential 
effector genes identified by FLAMES offer insights into several bio-
logical processes that may have a causal role in ADHD etiology, provid-
ing avenues for further research. The genetic correlations with other 
phenotypes further indicate the wide pleiotropic effects of genetic 
variants and the role that genetic variants has in the co-occurrence 
with mental health traits.
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Methods
Ethics and inclusion statement
This study is the result of a large collaborative effort among multiple 
clinical and population-based cohorts. Researchers and principal 
investigators (PIs) representing the individual cohorts were involved in 
the design and execution of the study. Cohort-specific GWAS analyses 
were performed locally by local researchers. Local researchers and 
PIs were included as co-authors in consultation with the PIs of each 
included cohort. Data collections for the cohorts were approved by 
local ethics committees. Study approval was obtained from the Central 
Ethics Committee on Research Involving Human Subjects of the VU 
University Medical Center, Amsterdam (NTR, 25 May 2007 and ACTION 
2013/41 and 2014.252), an institutional review board (IRB) certified 
by the US Office of Human Research Protections (IRB—IRB00002991 
under Federalwide Assurance (FWA00017598); IRB/institute codes).

Sample and cohorts
Childhood cohorts that collaborate within the ‘Aggression in Children: 
Unraveling Gene–Environment Interplay to Inform Treatment and 
Intervention Strategies’ (ACTION) consortium19,28,31 and EAGLE consor-
tium32 took part in the meta-analysis of ADHD symptom counts (ADH-
DSYMP). Cohorts assessed ADHD symptoms in children and adolescents 
aged 1.5 to 18 years and also included adult retrospective assessments. 
Each cohort followed a standardized operating protocol (available at 
https://www.action-euproject.eu/content/data-protocols and detailed 
in Supplementary Information). Cohorts could contribute one or sev-
eral univariate GWASs. A separate analyses were performed for every 
unique combination of rater, instrument and age (so that each GWAS 
included a maximum of one measure for each individual), with a mini-
mum of 450 observations per GWAS. Table 1 presents an overview of all 
included cohorts. Extended information on the cohorts can be found 
in Supplementary Table 8 and Supplementary Note. Assessments of 
individuals of non-European ancestry were limited for varying reasons, 
and analyses were restricted to individuals of European ancestry. In 
total, 28 cohorts contributed 154 GWASs, resulting in a total of 290,134 
observations from 70,953 unique individuals (Supplementary Table 2).

Measurement of ADHD symptoms
ADHD symptoms in children and adolescents were rated by moth-
ers, fathers, teachers and the individuals themselves. Additionally, 
two cohorts (QIMR and COGA) included retrospective assessments 
of (pre-)adolescent ADHD symptoms from self-report or mater-
nal report. To maximize sample size, we included measurements 
of ADHD symptoms from multiple instruments. In total, 20 ADHD 
symptom assessment instruments were included in the meta-analysis 
(Supplementary Table 3). The most commonly used instruments were 
the Achenbach System of Empirically Based Assessment33 and the 
Strengths and Difficulties Questionnaire34.

Genotyping and quality control
Genotyping was performed within each cohort using common geno-
typing arrays (Supplementary Table 4), followed by cohort-specific 
quality control (QC) based on individual-based and variant-based call 
rate, Hardy–Weinberg equilibrium, excessive heterozygosity rates and 
minor allele frequency (Supplementary Table 5). A total of 78.6% of the 
cohorts imputed their genotypes to 1000 Genomes Project (1000G) 
phase 3 version 5, while the other cohorts used 1000G phase 1 version 
3 as the reference set for the imputation (Supplementary Table 6). All 
genotypes were mapped to build 37 of the Human Genome Reference 
Consortium assembly (GRCh37).

GWAS model
Each cohort performed a univariate GWAS where ADHD symptoms 
were regressed on the SNP genotype, with age, sex and first five 
ancestry-based principal components as fixed effects, and, if necessary, 

cohort-specific covariates (Supplementary Table 7). Three cohorts 
(BREATHE, INMA and GINIplus/LISA) did not include PCs in their uni-
variate GWAS. These were relatively small and homogeneous GWAS 
samples. Heterogeneity tests and forest plots indicated no clear outly-
ing results for these three cohorts. The genetic correlation between the 
full GWAMA and one excluding these cohorts was almost one (rg = 0.99, 
s.e. = 0.13), and both GWAMAs implicated the same genetic loci and 
lead SNPs. To correct for dependency between observations within 
univariate analyses, cohorts with related individuals applied a mixed 
linear model35 or a sandwich correction of the standard errors36.

GWASs were stratified by (1) rater, (2) instrument and (3) age, so 
that observations within a univariate GWAS were independent, with a 
minimum stratum sample size of 450 observations. In total, summary 
statistics for 154 univariate GWAS were uploaded. Descriptive statistics 
for each uploaded GWAS are shown in Supplementary Table 8. Each 
cohort also supplied information on the degree of sample overlap 
and phenotypic correlation between their univariate analyses. These 
statistics allowed us to account for dependency between observations 
within cohorts.

Pre-GWAMA QC
Summary statistics from each GWAS were subjected to QC using the 
EasyQC software package37. SNPs with a genotyping rate below 95% were 
removed. We applied variable QC filters on minor allele frequency and 
Hardy Weinberg equilibrium P value tailored to the sample size. Respec-
tive cutoffs of INFO > 0.6 and INFO >0.7 were applied to SNPs that were 
imputed using MACH and IMPUTE38. Reported allele frequencies were 
compared to the allele frequency in an imputation-matched refer-
ence population and variants with an absolute difference in allele fre-
quency larger than 0.2 were removed. Supplementary Table 9 reports 
the number of SNPs before and after QC. We assessed heterogeneity 
by calculating the M statistic for each cohort and ADHDDIAG. Results 
indicated that the contribution of the TEDS cohort was substantially 
weaker compared to the other cohorts. Plotting the M statistic against 
the average study effect size for the lead SNPs showed that it is unlikely 
that TEDS biased the results, which is also indicated by the forest plots 
for all lead SNPs (Supplementary Fig. 1 and Supplementary Data 1 and 
2). Results also indicated that ADHDDIAG was substantially stronger in 
driving the lead SNP effects compared to the other cohorts. This is not 
unexpected, given that the ADHD diagnosis is a much narrower defini-
tion of ADHD than ADHD symptoms.

Meta-analysis of ADHD symptoms
The meta-analysis approach is equal to the method described in ref. 
19. Due to sample overlap between multiple GWASs from the same 
cohort, the covariance between GWAS test statistics is a function of 
sample overlap and a truly shared genetic signal39. To correct for sample 
overlap during the meta-analysis, we applied a modified version of the 
multivariate meta-analysis approach mentioned in ref. 40, where we 
calculated the expected CTI39 based on the observed sample overlap 
and phenotypic covariance, as reported by the cohorts. Finally, because 
the sum of the number of observations (nobs) was an overestimate of 
the effective sample size (neff), we approximated the effective sample 
size as proposed in ref. 19—neff = √nT CTI

−1√n. In this notation, n is a 
vector of sample sizes and CTI is the matrix of CTIs. SNPs with minor 
allele frequency <0.01, neff < 15,000, or observed in only one cohort 
were removed from further analyses. SNP heritability (h2

SNP
) was esti-

mated by genomic Structural Equation Modeling in R41.

Stratified meta-analyses of ADHD symptoms
After meta-analyzing all ADHD symptoms GWASs (ADHDSYMP), we per-
formed stratified meta-analyses—rater specific, age specific and instru-
ment specific. For each stratified meta-analysis, we calculated genetic 
correlations (rg) with other stratified meta-analysis results using LDSC 
in genomicSEM. To ensure sufficient power for the genetic correlations, 
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rg was calculated across stratified assessments of ADHD if the z score 
for the corresponding GWAMA was 4 or higher.

Meta-analysis with case-control ADHD GWAS
In the next step, we meta-analyzed our ADHDSYMP GWAMA with a GWAS 
of ADHD diagnosis13. In ADHDDIAG, cases are defined as clinically diag-
nosed with ADHD or prescribed medication specific to ADHD. ADHDDIAG 
included data from the Lundbeck Foundation Initiative for Integra-
tive Psychiatric Research, the Psychiatric Genomics Consortium and 
deCode. Data were obtained for adults and children, resulting in a total 
of 38,691 cases and 186,843 controls.

For the meta-analysis, we first adjusted the test statistics and 
sample sizes for ADHDSYMP and ADHDDIAG as proposed in ref. 11. The 
lifetime population prevalence of ADHD was assumed to be 5%4. SNP 
heritability for ADHDSYMP, and ADHDDIAG, and rg and CTI between ADH-
DSYMP and ADHDDIAG were estimated by genomicSEM in R41. We 
meta-analyzed the results from ADHDSYMP and ADHDDIAG based on the 
approach outlined in ref. 40. We specified the effective sample sizes 
for ADHDDIAG as suggested in ref. 19—neff =

4

( 1

ncases
+ 1

ncontrols
)

. SNP heritability 

was estimated using LDSC in genomicSEM41. There is no sample overlap 
between ADHDSYMP and ADHDDIAG.

Follow-up analyses
Fine mapping and gene-based tests. To identify independent 
genome-wide significant loci and credible sets for each locus, we used 
FUMA20, FINEMAP22, PAINTOR23 and CAVIARBF21. One causal variant 
was assumed per locus. In FINEMAP, PAINTOR and CAVIARBF, variants 
located within 1 Mb of index variants were included in the analyses. All 
SNPs within 95% of the total posterior probability of the variants were 
included in the credible sets if they were tagged in at least two of the 
three methods. In FUMA, linkage disequilibrium blocks of independent 
significant SNPs within 250 kb were merged into a single genomic locus. 
These loci were mapped to protein-coding genes if they were located 
within a maximum distance of 10 kb of an independent significant SNP, 
or if a variant was annotated to the gene based on expression quanti-
tative trait locus data or chromatin interaction data from the human 
brain (see Supplementary Methods for the included datasets). These 
are the same settings as applied in ref. 13.

Next, gene-based tests were run in MAGMA24. MAGMA gene-based 
tests combine P values from multiple SNPs inside a gene to obtain a test 
statistic for each gene (zgene), while accounting for incomplete linkage 
disequilibrium between SNPs. To this end, a list of 18,296 genes and 
their start-positions and end-positions, and preformatted genotypes, 
based on 1000G phase 3, were obtained from the MAGMA website 
(Supplementary Methods). We applied a Bonferroni correction for 
multiple testing at α = 0.05/18,296 = 2.733 × 10−6.

It remains a challenge to identify which genes are causally 
involved in ADHD. FLAMES was recently developed with the goal 
of predicting the most likely effector genes from GWAS results25. 
FLAMES is a new framework that combines SNP-to-gene evidence 
and convergence-based evidence, outputting a single score per gene 
from fine-mapped GWAS loci. We performed statistical fine mapping 
using FINEMAP version 1.4.1 (ref. 22), and a linkage disequilibrium 
reference panel of 100,000 unrelated UK Biobank participants of 
European descent. Given that the GWAMA contains cohorts that do 
not belong to the UK Biobank, we restricted the maximum number of 
causal variants in a locus modeled by FINEMAP to 1, to avoid overfitting. 
As a result, each locus also leads to a maximum of one (most) likely 
effector gene per locus. We ran FLAMES (version 1.0.0) by inputting 
pathway naïve PoPS scores42 for our GWAMA, the FUMA-defined loci 
and corresponding fine-mapped credible sets, resulting in a single 
FLAMES score per gene. Genes with FLAMES scores above 0.05 were 
interpreted as potential effector genes, as suggested by the FLAMES 
authors. For more information on FLAMES and the included functional 

annotations, see ref. 25. Functional annotation and enrichment analysis 
were done for a set of genes with FLAMES scores above 0.05.

Enrichment and pathway analyses. We performed MAGMA gene-set 
analyses in the full ADHDOVERALL results. Gene property analysis was per-
formed to test relationships between tissue-specific gene expression 
profiles (see Supplementary Methods for an overview) and ADHD–gene 
associations. Next, genes mapped from credible sets by FUMA, and 
the set of potential effector genes identified with FLAMES were used 
in gene-set enrichment analyses. We ran hypergeometric tests using 
FUMA genes2func to assess if genes of interest are overrepresented 
in any of the predefined gene sets (see Supplementary Methods for 
all included gene sets). We used SynGO43 v1.2 (‘20231201’) to test for 
enrichment in genes encoding for proteins involved in synaptic cellular 
components and biological pathways. The brain expressed background 
set was used, containing 18,035 unique genes.

Genetic correlations. We computed genetic correlations between ADH-
DOVERALL and 49 preselected traits, including cognition and externalizing 
behaviors, psychopathologies, anthropometric measures, metabolic, 
hormone and health outcomes (Supplementary Table 10). Phenotypes 
were selected based on established hypotheses or were at least nominally 
significantly (P < 0.05) genetically correlated with ADHDDIAG2019 (ref. 11). 
Following ref. 43, we restricted genetic correlations to external pheno-
types for which the z scores of the LDSC-based h2

SNP
 are ≥4.

PGS analysis. We assessed the performance of PGSs based on ADH-
DSYMP, ADHDDIAG and ADHDOVERALL by modeling their effect on an aggre-
gated ADHD measure in three large cohorts (ALSPAC, MoBa and NTR). 
PGSs were constructed using PRScs (--n_burnin 10.000, --n_iter 25000), 
with summary statistics that excluded the target PGS cohort. We cre-
ated an aggregated ADHD measure by combining the z scores of indi-
vidual measures into a single standardized ADHD measure. We then 
performed regression analyses in R with ADHD as dependent variable, 
PGS as independent variable, and included sex, genotyping platform 
and ten genomic PCs as covariates. Because NTR includes data on family 
members, we controlled for dependency between observations by mul-
tilevel modeling in lme4 with a random intercept for families. Results 
from the three cohorts were meta-analyzed with the function metaplus 
in R. Explained variance was calculated separately in each cohort by 
comparing the explained variance of models with or without the PGSs.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Summary statistics for ADHDSYMP and ADHDOVERALL are available 
for download through GWAS Catalog (ebi.ac.uk/gwas/studies/
GCST90568440 and ebi.ac.uk/gwas/studies/GCST90568441). ADH-
DDIAG summary statistics are available for download at the Psychiatric 
Genomics Consortium (PGC) website (https://www.med.unc.edu/pgc/ 
download-results/). Raw data are available upon request through the 
individual participating cohorts. Individual cohort GWAS summary 
statistics are available upon request through the corresponding author. 
Datasets used for gene mapping and hypergeometric gene-set tests in 
FUMA are listed in Supplementary Methods.

Code availability
The complete analysis plan is available for download at https://www. 
action-euproject.eu/sites/default/files/Action%20AGG%20AP%20SOP. 
pdf. The N-weighted GWAMA code is available via GitHub at https:// 
github.com/baselmans/multivariate_GWAMA and via Zenodo at 
https://doi.org/10.5281/zenodo.15862079 (ref. 44. For a list of software 
and versions used, see Supplementary Methods.
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